scholarly journals Evaluation of Climate Change Impacts on Wetland Vegetation in the Dunhuang Yangguan National Nature Reserve in Northwest China Using Landsat Derived NDVI

2018 ◽  
Vol 10 (5) ◽  
pp. 735 ◽  
Author(s):  
Feifei Pan ◽  
Jianping Xie ◽  
Juming Lin ◽  
Tingwei Zhao ◽  
Yongyuan Ji ◽  
...  
Author(s):  
Feifei Pan ◽  
Jianping Xie ◽  
Juming Lin ◽  
Tingwei Zhao ◽  
Yongyuan Ji ◽  
...  

Based on 541 Landsat images between 1988 and 2016, the normalized difference vegetation indices (NDVIs) of the wetland vegetation at Xitugou (XTG) and Wowachi (WWC) inside the Dunhuang Yangguan National Nature Reserve (YNNR) in northwest China were calculated for assessing impacts of climate change on wetland vegetation in the YNNR. It was found that the wetland vegetation at the XTG and WWC both had shown a significant increasing trend in the past 30 years, and the increase in both annual mean temperature and peak snow depth over the Altun Mountains led to the increase of wetland vegetation. The influence of local precipitation on the XTG wetland vegetation was greater than on the WWC wetland vegetation, which demonstrates that in extremely arid regions, the major constrain to the wetland vegetation is water availability in soils which is greatly related to the surface water detention and discharge of groundwater. At both XTG and WWC, snowmelt from the Altun Mountains is the main contributor to the groundwater discharge, while local precipitation plays a less role in influencing the wetland vegetation at the WWC than at the XTG, because the wetland vegetation grows on a relatively flat terrain at the WWC, while in a stream channel at the XTG.


Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 2041
Author(s):  
Dandan Yan ◽  
Zhaoqing Luan ◽  
Dandan Xu ◽  
Yuanyuan Xue ◽  
Dan Shi

Water level fluctuations resulting from natural and anthropogenic factors have been projected to affect the functions and structures of wetland vegetation communities. Therefore, it is important to assess the impact of the hydrological gradient on wetland vegetation. This paper presents a case study on the Honghe National Nature Reserve (HNNR) in the Sanjiang Plain, located in Northeast China. In this study, 210 plots from 18 sampling line transects were sampled in 2011, 2012, and 2014 along the hydrological gradient. Using a Gaussian logistic regression model, we determined a relationship between three wetland plant species and a hydrologic indicator—a combination of the water level and soil moisture—and then applied that relationship to simulate the distribution of plants across a larger landscape by the geographic information system (GIS). The results show that the optimum ecological amplitude of Calamagrostis angustifolia to the hydrological gradient based on the probability of occurrence model was [0.09, 0.41], that of Carex lasiocarpa was [0.35, 0.57], and that of Carex pseudocuraica was [0.49, 0.77]. The optimum of Calamagrostis angustifolia was 0.25, Carex lasiocarpa was 0.46, and Carex pseudocuraica was 0.63. Spatial distribution probability maps were generated, as were maps detailing the distribution of the most suitable habitats for wetland vegetation species. Finally, the model simulation results were verified, showing that this approach can be employed to provide an accurate simulation of the spatial distribution pattern of wetland vegetation communities. Importantly, this study suggests that it may be possible to predict the spatial distribution of different species from the hydrological gradient.


2014 ◽  
Vol 26 (2) ◽  
pp. 253-259 ◽  
Author(s):  
YE Chun ◽  
◽  
WU Guiping ◽  
ZHAO Xiaosong ◽  
WANG Xiaolong ◽  
...  

2019 ◽  
Author(s):  
ZUHAO ZHOU ◽  
JIAJIA LIU ◽  
NING HAN ◽  
JINGYA CAI ◽  
CHONGYU XU ◽  
...  

2012 ◽  
Vol 4 (2) ◽  
pp. 191-195 ◽  
Author(s):  
Feng XU ◽  
Ming MA ◽  
WeiKang YANG ◽  
David BLANK ◽  
YiQun WU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document