vegetation communities
Recently Published Documents


TOTAL DOCUMENTS

338
(FIVE YEARS 87)

H-INDEX

31
(FIVE YEARS 4)

2021 ◽  
Author(s):  
◽  
Hannah Juchnowicz

<p>A 6m thick section of organic-rich sediment, exposed at Karioi, near Ohakune, central North Island (672m above sea level), presents an opportunity to form a detailed palynological record of Late Quaternary vegetation and climate change. The organic-rich sequence at Karioi lies beneath a 3.29m thick cover-bed sequence that contains towards its base the c. 25.4 ka cal BP Kawakawa/Oruanui Tephra, a key chronostratigraphic marker for the Last Glacial Maximum (LGM) throughout New Zealand. A previous palynological investigation of the underlying organic sediments suggested they extended back from the LGM (Marine isotope stage 2) to the previous interglacial (MIS 5). Such apparently continuous terrestrial records spanning this age range and located at this altitude are rare. A key feature of the Karioi organic sequence is the occurrence of numerous millimetre- to decimetre- thick tephra, derived from a variety of North Island eruptive sources. The possibility that volcanic processes have influenced vegetation change makes climate inferences at this important site potentially problematic. In this new study of the Karioi section, centimetre-scale palynological and diatom sampling conducted above and below three selected tephra (here named ‘Big Lower Lapilli’, ’Unknown’ tephra, and ‘Little’ tephra) at Karioi, were used to assess the influence of these volcanic events on the vegetation and local hydrology. Loss-on-ignition and magnetic susceptibility were used, alongside pollen and diatom analysis, to infer changes in local hydrology and depositional processes in relation to environmental stability. Together, these analyses helped determine the volcanic impacts on vegetation assemblages gained from the pollen record at the site and allowed these to be disassociated from larger scale climate influences of interest. The results of this study indicate a discernible volcanic impact on vegetation and hydrology following just one of the three volcanic events targeted in the record. High-resolution (0.5cm) pollen analysis above and below the largest of the three tephra layers, the 22cm thick ‘Big Lower Lapilli’ showed a notable change in vegetation assemblage immediately following tephra deposition. The most significant of these changes was the marked increase in herbs. This was an unexpected result thought to be due to the proximity of the site to sub-alpine and alpine herbaceous communities, which in turn were closer to the source of volcanism than other vegetation communities depicted in the pollen record. The changes to the pollen spectra are estimated to have taken 300 years to return to pre-eruption assemblages. Magnetic susceptibility and loss-on-ignition results further add to this research by indicating the comparative stability of the depositional environment around the time of deposition of the ‘Big Lower Lapilli’. Statistical analysis further identified a change in vegetation communities associated with tephra deposition, coinciding with an increase in diatom species abundance, which signified an increase in water volume and depth at the site. This was most clearly seen by the marked increase in Aulacoseira ambigua, which is almost exclusively found in water bodies of at least 2 metres depth. These results have major implications for pollen-based climate reconstructions from sequences with interbedded tephra layers. First, such investigations should include fine resolution analyses around prominent tephra layers to test for possible volcanic disturbance that may be a confounding factor in any paleoclimatic reconstructions applied. In this study, for example, vegetation assemblages may have taken up to 300 years to return to pre-eruption levels, but this recovery phase was well within the c. 1000 year inter-sample period of the original coarse (10cm) resolution record. Without the fine resolution study conducted here, the decline of shrubs and increase in grasses, with no obvious changes to trees following deposition of the ‘Big Lower Lapilli’ could have been inferred as a short-term cooling interval. Beyond this restricted zone of volcanic disturbance, greater confidence in the paleoclimatic interpretation of the Karioi pollen record has been achieved as a result of this finer resolution ‘test’ for volcanic disturbance. Second, the volcanic disturbance indicated following the ‘big lower lapilli’ has shed light on pollen taphonomic sources and pathways at this site and in turn, on spatial patterns of vegetation communities. In this case, the increase in tree pollen relative to non-arboreal pollen is interpreted as originating from more distant forest stands that have been comparatively less affected by the deposition of tephra than locally growing vegetation.</p>


2021 ◽  
Author(s):  
◽  
Hannah Juchnowicz

<p>A 6m thick section of organic-rich sediment, exposed at Karioi, near Ohakune, central North Island (672m above sea level), presents an opportunity to form a detailed palynological record of Late Quaternary vegetation and climate change. The organic-rich sequence at Karioi lies beneath a 3.29m thick cover-bed sequence that contains towards its base the c. 25.4 ka cal BP Kawakawa/Oruanui Tephra, a key chronostratigraphic marker for the Last Glacial Maximum (LGM) throughout New Zealand. A previous palynological investigation of the underlying organic sediments suggested they extended back from the LGM (Marine isotope stage 2) to the previous interglacial (MIS 5). Such apparently continuous terrestrial records spanning this age range and located at this altitude are rare. A key feature of the Karioi organic sequence is the occurrence of numerous millimetre- to decimetre- thick tephra, derived from a variety of North Island eruptive sources. The possibility that volcanic processes have influenced vegetation change makes climate inferences at this important site potentially problematic. In this new study of the Karioi section, centimetre-scale palynological and diatom sampling conducted above and below three selected tephra (here named ‘Big Lower Lapilli’, ’Unknown’ tephra, and ‘Little’ tephra) at Karioi, were used to assess the influence of these volcanic events on the vegetation and local hydrology. Loss-on-ignition and magnetic susceptibility were used, alongside pollen and diatom analysis, to infer changes in local hydrology and depositional processes in relation to environmental stability. Together, these analyses helped determine the volcanic impacts on vegetation assemblages gained from the pollen record at the site and allowed these to be disassociated from larger scale climate influences of interest. The results of this study indicate a discernible volcanic impact on vegetation and hydrology following just one of the three volcanic events targeted in the record. High-resolution (0.5cm) pollen analysis above and below the largest of the three tephra layers, the 22cm thick ‘Big Lower Lapilli’ showed a notable change in vegetation assemblage immediately following tephra deposition. The most significant of these changes was the marked increase in herbs. This was an unexpected result thought to be due to the proximity of the site to sub-alpine and alpine herbaceous communities, which in turn were closer to the source of volcanism than other vegetation communities depicted in the pollen record. The changes to the pollen spectra are estimated to have taken 300 years to return to pre-eruption assemblages. Magnetic susceptibility and loss-on-ignition results further add to this research by indicating the comparative stability of the depositional environment around the time of deposition of the ‘Big Lower Lapilli’. Statistical analysis further identified a change in vegetation communities associated with tephra deposition, coinciding with an increase in diatom species abundance, which signified an increase in water volume and depth at the site. This was most clearly seen by the marked increase in Aulacoseira ambigua, which is almost exclusively found in water bodies of at least 2 metres depth. These results have major implications for pollen-based climate reconstructions from sequences with interbedded tephra layers. First, such investigations should include fine resolution analyses around prominent tephra layers to test for possible volcanic disturbance that may be a confounding factor in any paleoclimatic reconstructions applied. In this study, for example, vegetation assemblages may have taken up to 300 years to return to pre-eruption levels, but this recovery phase was well within the c. 1000 year inter-sample period of the original coarse (10cm) resolution record. Without the fine resolution study conducted here, the decline of shrubs and increase in grasses, with no obvious changes to trees following deposition of the ‘Big Lower Lapilli’ could have been inferred as a short-term cooling interval. Beyond this restricted zone of volcanic disturbance, greater confidence in the paleoclimatic interpretation of the Karioi pollen record has been achieved as a result of this finer resolution ‘test’ for volcanic disturbance. Second, the volcanic disturbance indicated following the ‘big lower lapilli’ has shed light on pollen taphonomic sources and pathways at this site and in turn, on spatial patterns of vegetation communities. In this case, the increase in tree pollen relative to non-arboreal pollen is interpreted as originating from more distant forest stands that have been comparatively less affected by the deposition of tephra than locally growing vegetation.</p>


Author(s):  
M. V. Bocharnikov

The evaluation of the ecosystem diversity of the Northeastern Transbaikalia orobiome has been completedon the basis of conjunctive analysis of floristic and geobotanical components of its vegetation cover. For the first time, acomplex method to evaluate ecological and geographical patterns in the differentiation of species (vascular plants) andphytocoenotic (vegetation communities) diversity has been used on the basis of the biome concept. It has been determinedaltitudinal gradients and regional specific in typological diversity of altitudinal spectra of vegetation and individual belts.The geographical features of ecosystem diversity development and its factors have been revealed at a regional level usingliterature, collection and cartographic data.


2021 ◽  
Vol 13 (17) ◽  
pp. 3397
Author(s):  
Dandan Xu ◽  
Jeff K. Harder ◽  
Weixin Xu ◽  
Xulin Guo

Great efforts have been made to manage and restore native prairies to protect native species, enrich biodiversity, protect ecological resilience, and maintain ecosystem services. Much of this has been focused on preventing degradation from overgrazing and crop conversion. Understanding the consequences of management polices is important to identify best practices. Previous research has compared restoration outcomes from variable intensity grazing, prescribed fire, and grazing removal. However, few studies have explored the optimal durations of management practices and variation in restoration outcomes among vegetation communities. This study evaluates whether the impact of grazing cessation and reintroduction varies among native vegetation communities and measures the effective time periods of grazing cessation and reintroduction. Restoration outcomes were evaluated using four biophysical indicators (fresh biomass, soil organic matter, green cover, and litter cover) and two vegetation indices (normalized difference vegetation index (NDVI) and normalized difference water index (NDWI)) measured from Landsat images using seasonal Kalman filter and raster time series analysis. The results show that: (i) Grazing cessation increased soil organic matter and green cover while decreasing fresh biomass compared to moderate grazing management, while grazing reintroduction influences those indicators in an opposite direction; (ii) The effective time period for prairie conservation is about 11–14 years and varies among vegetation communities and biophysical indicators; (iii) The effective intensity of grazing cessation is highest in valley grassland, moderate in upland grassland, and mildest in sloped grassland; (iv) Grazing reintroduction returned the three native vegetation communities to the initial condition (i.e., the stage in 1985 before large grazers were removed), with less time than the time consumed for grazing cessation to restore the prairie ecosystem to the maximum changes; (v) Grazing reintroduction effectively influences upland and valley grasslands for 7 to 9 years, varying from different indicators, while it continuously affected sloped grassland with no clear time lag; (vi) The intensity of grazing reintroduction was strongest in sloped grassland, moderate in upland grassland, and mildest in valley grassland. The results of this study suggest expected time periods for prairie management methods to achieve results.


2021 ◽  
Author(s):  
Andrew Vincent Bradley ◽  
Roxane Andersen ◽  
Chris Marshall ◽  
Andrew Sowter ◽  
David James Large

Abstract. Better tools for rapid and reliable assessment of global peatland extent and condition are urgently needed to support action to prevent their further decline. Peatland surface motion is a response to changes in the water and gas content of a peat body regulated by the ecology and hydrology of a peatland system. Surface motion is therefore a sensitive measure of ecohydrological condition but has traditionally been impossible to measure at the landscape scale. Here we examine the potential of surface motion metrics derived from InSAR satellite radar to map peatland condition in a blanket bog landscape. We show that the timing of maximum seasonal swelling of the peat is characterized by a bimodal distribution. The first maximum is typical of steeper topographic gradients, peatland margins, degraded peatland and more often associated with ‘shrub’-dominated vegetation communities. The second maximum is typically associated with low topographic gradients often featuring pool systems, and Sphagnum dominated vegetation communities. Specific conditions associated with ‘Sphagnum’ and ‘shrub’ communities are also determined by the amplitude of swelling and average multiannual motion. Peatland restoration currently follows a re-wetting strategy, however our approach highlights that landscape setting appears to determine the optimal endpoint for restoration. Aligning expectation for restoration outcomes with landscape setting might optimise peatland stability and carbon storage. Importantly, deployment of this approach, based on surface motion dynamics, could support peatland mapping and management on a global scale.


2021 ◽  
Vol 13 (13) ◽  
pp. 2571
Author(s):  
Olivia Azevedo ◽  
Thomas C. Parker ◽  
Matthias B. Siewert ◽  
Jens-Arne Subke

Soils represent the largest store of carbon in the biosphere with soils at high latitudes containing twice as much carbon (C) than the atmosphere. High latitude tundra vegetation communities show increases in the relative abundance and cover of deciduous shrubs which may influence net ecosystem exchange of CO2 from this C-rich ecosystem. Monitoring soil respiration (Rs) as a crucial component of the ecosystem carbon balance at regional scales is difficult given the remoteness of these ecosystems and the intensiveness of measurements that is required. Here we use direct measurements of Rs from contrasting tundra plant communities combined with direct measurements of aboveground plant productivity via Normalised Difference Vegetation Index (NDVI) to predict soil respiration across four key vegetation communities in a tundra ecosystem. Soil respiration exhibited a nonlinear relationship with NDVI (y = 0.202e3.508 x, p < 0.001). Our results further suggest that NDVI and soil temperature can help predict Rs if vegetation type is taken into consideration. We observed, however, that NDVI is not a relevant explanatory variable in the estimation of SOC in a single-study analysis.


Sign in / Sign up

Export Citation Format

Share Document