scholarly journals A New Route to Enhance the Packing Density of Buckypaper for Superior Piezoresistive Sensor Characteristics

Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2904
Author(s):  
Mustafa Danish ◽  
Sida Luo

Transforming individual carbon nanotubes (CNTs) into bulk form is necessary for the utilization of the extraordinary properties of CNTs in sensor applications. Individual CNTs are randomly arranged when transformed into the bulk structure in the form of buckypaper. The random arrangement has many pores among individual CNTs, which can be treated as gaps or defects contributing to the degradation of CNT properties in the bulk form. A novel technique of filling these gaps is successfully developed in this study and termed as a gap-filling technique (GFT). The GFT is implemented on SWCNT-based buckypaper in which the pores are filled through small-size MWCNTs, resulting in a ~45.9% improvement in packing density. The GFT is validated through the analysis of packing density along with characterization and surface morphological study of buckypaper using Raman spectrum, particle size analysis, scanning electron microscopy, atomic force microscopy and optical microscopy. The sensor characteristics parameters of buckypaper are investigated using a dynamic mechanical analyzer attached with a digital multimeter. The percentage improvement in the electrical conductivity, tensile gauge factor, tensile strength and failure strain of a GFT-implemented buckypaper sensor are calculated as 4.11 ± 0.61, 44.81 ± 1.72, 49.82 ± 8.21 and 113.36 ± 28.74, respectively.

Author(s):  
EL- Assal I. A. ◽  
Retnowati .

Objective of the present investigation was enthused by the possibility to develop solid lipid nanoparticles (SLNs) of hydrophilic drug acyclovir. Also study vitro and vivo drug delivery. Methods: Drug loaded SLNs (ACV-SLNs) were prepared by high pressure homogenization of aqueous surfactant solutions containing the drug-loaded lipids in the melted or in the solid state with formula optimization study (Different lipid concentration, drug loaded, homogenization / stirring speed and compritol 888ATO: drug ratio). ACV - SLN incorporated in cream base. The pH was evaluated and rheological study. Drug release was evaluated and compared with simple cream- drug, ACV – SLN with compritol 888ATO and marketed cream. The potential of SLN as the carrier for dermal delivery was studied. Results: Particle size analysis of SLNs prove small, smooth, spherical shape particle ranged from 150 to 200 nm for unloaded and from 330 to 444 nm for ACV loaded particles. The EE% for optimal formula is 72% with suitable pH for skin application. Rheological behavior is shear thinning and thixotropic. Release study proved controlled drug release for SLNs especially in formula containing compritol88 ATO. Stability study emphasized an insignificant change in SLNs properties over 6 month. In-vivo study showed significantly higher accumulation of ACV in stratum corneum, dermal layer, and receptor compartment compared with blank skin. Conclusion: AVC-loaded SLNs might be beneficial in controlling drug release, stable and improving dermal delivery of antiviral agent(s).


Circular ◽  
1985 ◽  
Author(s):  
Lawrence J. Poppe ◽  
A.H. Eliason ◽  
J.J. Fredericks

Sign in / Sign up

Export Citation Format

Share Document