scholarly journals Symmetric Fuzzy Stochastic Differential Equations with Generalized Global Lipschitz Condition

Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 819
Author(s):  
Marek T. Malinowski

The paper contains a discussion on solutions to symmetric type of fuzzy stochastic differential equations. The symmetric equations under study have drift and diffusion terms symmetrically on both sides of equations. We claim that such symmetric equations have unique solutions in the case that equations’ coefficients satisfy a certain generalized Lipschitz condition. To show this, we prove that an approximation sequence converges to the solution. Then, a study on stability of solution is given. Some inferences for symmetric set-valued stochastic differential equations end the paper.

2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Marek T. Malinowski

We introduce and analyze a new type of fuzzy stochastic differential equations. We consider equations with drift and diffusion terms occurring at both sides of equations. Therefore we call them the bipartite fuzzy stochastic differential equations. Under the Lipschitz and boundedness conditions imposed on drifts and diffusions coefficients we prove existence of a unique solution. Then, insensitivity of the solution under small changes of data of equation is examined. Finally, we mention that all results can be repeated for solutions to bipartite set-valued stochastic differential equations.


2007 ◽  
Vol 2007 ◽  
pp. 1-14 ◽  
Author(s):  
Jiajie Wang ◽  
Qikang Ran ◽  
Qihong Chen

We are concerned with the solutions of a special class of backward stochastic differential equations which are driven by a Brownian motion, where the uniform Lipschitz continuity is replaced by a stochastic one. We prove the existence and uniqueness of the solution in Lp with p>1.


2021 ◽  
Vol 10 (3) ◽  
pp. 77
Author(s):  
Qun Shi

In this paper we consider one dimensional generalized mean-field backward stochastic differential equations (BSDEs) driven by fractional Brownian motion, i.e., the generators of our mean-field FBSDEs depend not only on the solution but also on the law of the solution. We first give a totally new comparison theorem for such type of BSDEs under Lipschitz condition. Furthermore, we study the existence of the solution of such mean-field FBSDEs when the coefficients are only continuous and with a linear growth.


Author(s):  
Yi Chen ◽  
Jing Dong ◽  
Hao Ni

Consider a fractional Brownian motion (fBM) [Formula: see text] with Hurst index [Formula: see text]. We construct a probability space supporting both BH and a fully simulatable process [Formula: see text] such that[Formula: see text] with probability one for any user-specified error bound [Formula: see text]. When [Formula: see text], we further enhance our error guarantee to the α-Hölder norm for any [Formula: see text]. This enables us to extend our algorithm to the simulation of fBM-driven stochastic differential equations [Formula: see text]. Under mild regularity conditions on the drift and diffusion coefficients of Y, we construct a probability space supporting both Y and a fully simulatable process [Formula: see text] such that[Formula: see text] with probability one. Our algorithms enjoy the tolerance-enforcement feature, under which the error bounds can be updated sequentially in an efficient way. Thus, the algorithms can be readily combined with other advanced simulation techniques to estimate the expectations of functionals of fBMs efficiently.


Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1953
Author(s):  
Ning Ma ◽  
Zhen Wu

In this paper we study the existence and uniqueness of solutions for one kind of backward doubly stochastic differential equations (BDSDEs) with Markov chains. By generalizing the Itô’s formula, we study such problem under the Lipschitz condition. Moreover, thanks to the Yosida approximation, we solve such problem under monotone condition. Finally, we give the comparison theorems for such equations under the above two conditions respectively.


2020 ◽  
Vol 26 (1) ◽  
pp. 33-47
Author(s):  
Kamal Hiderah

AbstractThe aim of this paper is to show the approximation of Euler–Maruyama {X_{t}^{n}} for one-dimensional stochastic differential equations involving the maximum process. In addition to that it proves the strong convergence of the Euler–Maruyama whose both drift and diffusion coefficients are Lipschitz. After that, it generalizes to the non-Lipschitz case.


2019 ◽  
Vol 20 (01) ◽  
pp. 2050007 ◽  
Author(s):  
Khaled Bahlali ◽  
Mohamed Amine Mezerdi ◽  
Brahim Mezerdi

We consider McKean–Vlasov stochastic differential equations (MVSDEs), which are SDEs where the drift and diffusion coefficients depend not only on the state of the unknown process but also on its probability distribution. This type of SDEs was studied in statistical physics and represents the natural setting for stochastic mean-field games. We will first discuss questions of existence and uniqueness of solutions under an Osgood type condition improving the well-known Lipschitz case. Then, we derive various stability properties with respect to initial data, coefficients and driving processes, generalizing known results for classical SDEs. Finally, we establish a result on the approximation of the solution of a MVSDE associated to a relaxed control by the solutions of the same equation associated to strict controls. As a consequence, we show that the relaxed and strict control problems have the same value function. This last property improves known results proved for a special class of MVSDEs, where the dependence on the distribution was made via a linear functional.


Sign in / Sign up

Export Citation Format

Share Document