scholarly journals Turnpike Properties for Dynamical Systems Determined by Differential Inclusions

Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2326
Author(s):  
Alexander J. Zaslavski

In this paper, we study the turnpike phenomenon for trajectories of continuous-time dynamical systems generated by differential inclusions, which have a prototype in mathematical economics. In particular, we show that, if the differential inclusion has a certain symmetric property, the turnpike possesses the corresponding symmetric property. If we know a finite number of approximate trajectories of our system, then we know the turnpike and this information can be useful if we need to find new trajectories of our system or their approximations.

2009 ◽  
Vol 2009 ◽  
pp. 1-9
Author(s):  
Nihal Ege ◽  
Khalik G. Guseinov

The boundedness of the motions of the dynamical system described by a differential inclusion with control vector is studied. It is assumed that the right-hand side of the differential inclusion is upper semicontinuous. Using positionally weakly invariant sets, sufficient conditions for boundedness of the motions of a dynamical system are given. These conditions have infinitesimal form and are expressed by the Hamiltonian of the dynamical system.


2020 ◽  
Vol 26 ◽  
pp. 37 ◽  
Author(s):  
Elimhan N. Mahmudov

The present paper studies the Mayer problem with higher order evolution differential inclusions and functional constraints of optimal control theory (PFC); to this end first we use an interesting auxiliary problem with second order discrete-time and discrete approximate inclusions (PFD). Are proved necessary and sufficient conditions incorporating the Euler–Lagrange inclusion, the Hamiltonian inclusion, the transversality and complementary slackness conditions. The basic concept of obtaining optimal conditions is locally adjoint mappings and equivalence results. Then combining these results and passing to the limit in the discrete approximations we establish new sufficient optimality conditions for second order continuous-time evolution inclusions. This approach and results make a bridge between optimal control problem with higher order differential inclusion (PFC) and constrained mathematical programming problems in finite-dimensional spaces. Formulation of the transversality and complementary slackness conditions for second order differential inclusions play a substantial role in the next investigations without which it is hardly ever possible to get any optimality conditions; consequently, these results are generalized to the problem with an arbitrary higher order differential inclusion. Furthermore, application of these results is demonstrated by solving some semilinear problem with second and third order differential inclusions.


2007 ◽  
Vol 14 (5) ◽  
pp. 615-620 ◽  
Author(s):  
Y. Saiki

Abstract. An infinite number of unstable periodic orbits (UPOs) are embedded in a chaotic system which models some complex phenomenon. Several algorithms which extract UPOs numerically from continuous-time chaotic systems have been proposed. In this article the damped Newton-Raphson-Mees algorithm is reviewed, and some important techniques and remarks concerning the practical numerical computations are exemplified by employing the Lorenz system.


1994 ◽  
Vol 49 (12) ◽  
pp. 1241-1247 ◽  
Author(s):  
G. Zumofen ◽  
J. Klafter

Abstract We study transport in dynamical systems characterized by intermittent chaotic behavior with coexistence of dispersive motion due to periods of localization, and of enhanced diffusion due to periods of laminar motion. This transport is discussed within the continuous-time random walk approach which applies to both dispersive and enhanced motions. We analyze the coexistence for the standard map and for a one-dimensional map.


Sign in / Sign up

Export Citation Format

Share Document