scholarly journals Asymmetric Design Sensitivity and Isogeometric Shape Optimization Subject to Deformation-Dependent Loads

Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2373
Author(s):  
Min-Geun Kim ◽  
Bonyong Koo ◽  
You-Sung Han ◽  
Minho Yoon

We present a design sensitivity analysis and isogeometric shape optimization with path-dependent loads belonging to non-conservative loads under the assumption of elastic bodies. Path-dependent loads are sometimes expressed as the follower forces, and these loads have characteristics that depend not only on the design area of the structure but also on the deformation. When such a deformation-dependent load is considered, an asymmetric load stiffness matrix (tangential operator) in the response region appears. In this paper, the load stiffness matrix is derived by linearizing the non-linear non-conservative load, and the geometrical non-linear structure is optimally designed in the total Lagrangian formulation using the isogeometric framework. In particular, since the deformation-dependent load changes according to the change and displacement of the design area, the isogeometric analysis has a significant influence on the accuracy of the sensitivity analysis and optimization results. Through several numerical examples, the applicability and superiority of the isogeometric analysis method were verified in optimizing the shape of the problem subject to deformation-dependent loads.

PAMM ◽  
2016 ◽  
Vol 16 (1) ◽  
pp. 711-712
Author(s):  
Lukas Radau ◽  
Nikolai Gerzen ◽  
Franz-Joseph Barthold

1985 ◽  
Vol 107 (3) ◽  
pp. 334-339 ◽  
Author(s):  
R. J. Yang ◽  
K. K. Choi ◽  
E. J. Haug

A unified design sensitivity analysis theory and a linearization method of optimization are employed for structural component shape optimization. A material derivative method for shape design sensitivity analysis, using the variational formulation of the equations of elasticity and the finite element method for numerical analysis, is used to calculate derivatives of stress and other structural response measures with respect to boundary shape. Alternate methods of boundary shape parameterization are investigated, through solution of two test problems that have been treated previously by other methods: a fillet and a torque arm. Numerical experiments with these examples and a variety of finite element models show that component shape optimization requires careful selection of boundary parameterization, finite element model, and finite element grid refinement techniques.


Sign in / Sign up

Export Citation Format

Share Document