scholarly journals PointSCNet: Point Cloud Structure and Correlation Learning Based on Space-Filling Curve-Guided Sampling

Symmetry ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 8
Author(s):  
Xingye Chen ◽  
Yiqi Wu ◽  
Wenjie Xu ◽  
Jin Li ◽  
Huaiyi Dong ◽  
...  

Geometrical structures and the internal local region relationship, such as symmetry, regular array, junction, etc., are essential for understanding a 3D shape. This paper proposes a point cloud feature extraction network named PointSCNet, to capture the geometrical structure information and local region correlation information of a point cloud. The PointSCNet consists of three main modules: the space-filling curve-guided sampling module, the information fusion module, and the channel-spatial attention module. The space-filling curve-guided sampling module uses Z-order curve coding to sample points that contain geometrical correlation. The information fusion module uses a correlation tensor and a set of skip connections to fuse the structure and correlation information. The channel-spatial attention module enhances the representation of key points and crucial feature channels to refine the network. The proposed PointSCNet is evaluated on shape classification and part segmentation tasks. The experimental results demonstrate that the PointSCNet outperforms or is on par with state-of-the-art methods by learning the structure and correlation of point clouds effectively.

Author(s):  
S. Psomadaki ◽  
P. J. M. van Oosterom ◽  
T. P. M. Tijssen ◽  
F. Baart

Point cloud usage has increased over the years. The development of low-cost sensors makes it now possible to acquire frequent point cloud measurements on a short time period (day, hour, second). Based on the requirements coming from the coastal monitoring domain, we have developed, implemented and benchmarked a spatio-temporal point cloud data management solution. For this reason, we make use of the flat model approach (one point per row) in an Index Organised Table within a RDBMS and an improved spatio-temporal organisation using a Space Filling Curve approach. Two variants coming from two extremes of the space–time continuum are also taken into account, along with two treatments of the z dimension: as attribute or as part of the space filling curve. Through executing a benchmark we elaborate on the performance – loading and querying time –, and storage required by those different approaches. Finally, we validate the correctness and suitability of our method, through an out-of-the-box way of managing dynamic point clouds.


2016 ◽  
Vol 11 (2) ◽  
pp. 114-120 ◽  
Author(s):  
C. Peter Devadoss ◽  
Balasubramanian Sankaragomathi ◽  
Thirugnanasambantham Monica

1983 ◽  
Vol 90 (4) ◽  
pp. 283
Author(s):  
Liu Wen

2020 ◽  
Vol 38 (1B) ◽  
pp. 15-25
Author(s):  
Ali A. Hussain ◽  
Rehab F. Hassan

Spatial indexes, such as those based on the Quad Tree, are important in spatial databases for the effective implementation of queries with spatial constraints, especially when queries involve spatial links. The quaternary trees are a very interesting subject, given the fact that they give the ability to solve problems in a way that focuses only on the important areas with the highest density of information. Nevertheless, it is not without the disadvantages because the search process in the quad tree suffers from the problem of repetition when reaching the terminal node and return to the behavior of another way in the search and lead to the absorption of large amounts of time and storage. In this paper, the quad tree was improved by combining it with one of the space filling curve types, resulting in reduced storage space requirements and improved implementation time


Sign in / Sign up

Export Citation Format

Share Document