scholarly journals A Generic LC-HRMS Screening Method for Marine and Freshwater Phycotoxins in Fish, Shellfish, Water, and Supplements

Toxins ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 823
Author(s):  
Mirjam D. Klijnstra ◽  
Elisabeth J. Faassen ◽  
Arjen Gerssen

Phycotoxins occur in various marine and freshwater environments, and can accumulate in edible species such as fish, crabs, and shellfish. Human exposure to these toxins can take place, for instance, through consumption of contaminated species or supplements and through the ingestion of contaminated water. Symptoms of phycotoxin intoxication include paralysis, diarrhea, and amnesia. When the cause of an intoxication cannot directly be found, a screening method is required to identify the causative toxin. In this work, such a screening method was developed and validated for marine and freshwater phycotoxins in different matrices: fish, shellfish, water, and food supplements. Two LC methods were developed: one for hydrophilic and one for lipophilic phycotoxins. Sample extracts were measured in full scan mode with an Orbitrap high resolution mass spectrometer. Additionally, a database was created to process the data. The method was successfully validated for most matrices, and in addition, regulated lipophilic phycotoxins, domoic acid, and some paralytic shellfish poisoning toxins could be quantified in shellfish. The method showed limitations for hydrophilic phycotoxins in sea water and for lipophilic phycotoxins in food supplements. The developed method is a screening method; in order to confirm suspected compounds, comparison with a standard or an additional analysis such as NMR is required.

2012 ◽  
Vol 30 (5) ◽  
pp. 786-790 ◽  
Author(s):  
Jinping Cheng ◽  
Shuaishuai Pi ◽  
Shufeng Ye ◽  
Haomin Gao ◽  
Lei Yao ◽  
...  

2002 ◽  
Vol 65 (8) ◽  
pp. 1304-1308 ◽  
Author(s):  
KENTARO KAWATSU ◽  
YONEKAZU HAMANO ◽  
AKIRA SUGIYAMA ◽  
KIYOSHI HASHIZUME ◽  
TAMAO NOGUCHI

With a gonyautoxin 2/3 (GTX2/3)–specific monoclonal antibody (designated GT-13A) and a saxitoxin-horseradish peroxidase conjugate (STX-HRP), a direct competitive enzyme immunoassay (GTX-EIA) was established and its sensitivity to various toxin components was investigated. The concentrations resulting in 50% inhibition of the binding of STX-HRP to the solid-phase GT-13A antibody for GTX2/3, decarbamoyl-GTX2/3 (dc-GTX2/3), N-sulfocarbamoyl-GTX2/3 (C1/2), GTX1/4, STX, and neosaxitoxin (neoSTX) in GTX-EIA were found to be 0.28, 0.41, 0.52, 3.46, 4.06, and 89.37 ng/ml, respectively. When the minimum detection limit was assumed to be at a toxin concentration causing 30% inhibition of the binding of STX-HRP to the solid-phase GT-13A antibody, the detection limits for GTX2/3, dc-GTX2/3, C1/2, GTX1/4, STX, and neoSTX were found to be 0.15, 0.18, 0.19, 1.09, 1.50, and 22.93 ng/ml, respectively. These results indicate that all of the GTX components examined and STX are detectable at concentrations lower than the regulatory limit of 80 μg/100 g of shellfish tissue, even when a minimum dilution factor of 100 is applied to tissue extracts with the extraction procedure of the Association of Official Analytical Chemists. Therefore, GTX-EIA is thought to be a useful qualitative screening method for GTX components and STX in the mass monitoring of toxin-contaminated shellfish.


2011 ◽  
Vol 83 (11) ◽  
pp. 4206-4213 ◽  
Author(s):  
Hester J. van den Top ◽  
Christopher T. Elliott ◽  
Simon A. Haughey ◽  
Natalia Vilariño ◽  
Hans P. van Egmond ◽  
...  

2014 ◽  
Vol 97 (2) ◽  
pp. 492-497 ◽  
Author(s):  
Andrew D Turner ◽  
Monika Dhanji-Rapkova ◽  
Clothilde Baker ◽  
Myriam Algoet

Abstract AOAC Official Method 2005.06 precolumn oxidation LC-fluorescence detection method has been used for many years for the detection and quantitation of paralytic shellfish poisoning (PSP) toxins in bivalve molluscs. After extensive single- and multiple-laboratory validation, the method has been slowly gaining acceptance worldwide as a useful and practical tool for official control testing. In Great Britain, the method has become routine since 2008, with no requirement since then for reverting back to the bioassay reference method. Although the method has been refined to be semiautomated, faster, and more reproducible, the quantitation step can be complex and time-consuming. An alternative approach was developed to utilize the qualitative screening results for generatinga semiquantitative results assessment. Data obtained over 5 years enabled the comparison of semiquantitative and fully quantitative PSP results in over 15 000 shellfish samples comprising eight different species showed that the semiquantitative approach resulted in over-estimated paralytic shellfish toxin levels by an average factor close to two in comparison with the fully quantified levels. No temporal trends were observed in the data or relating to species type, with the exception of surf clams. The comparison suggested a semiquantitative threshold of 800 μg saxitoxin (STX) eq/kg should provide a safe limitfor the determination of samples to be forwarded to full quantitation. However, the decision was taken to halve this limit to include an additional safety factor of 2, resulting in the use of a semiquantitative threshold of 400 μg STX eq/kg. Implementation of the semiquantitative method into routine testing would result in a significant reduction in the numbers of samples requiring quantitation and have a positive impact on the overall turnaround of reported PSP results. The refined method would be appropriate for any monitoring laboratory faced with high throughput requirements.


Sign in / Sign up

Export Citation Format

Share Document