scholarly journals Does Vergence Affect Perceived Size?

Vision ◽  
2021 ◽  
Vol 5 (3) ◽  
pp. 33
Author(s):  
Paul Linton

Since Kepler (1604) and Descartes (1637), it has been suggested that ‘vergence’ (the angular rotation of the eyes) plays a key role in size constancy. However, this has never been tested divorced from confounding cues such as changes in the retinal image. In our experiment, participants viewed a target which grew or shrank in size over 5 s. At the same time, the fixation distance specified by vergence was reduced from 50 to 25 cm. The question was whether this change in vergence affected the participants’ judgements of whether the target grew or shrank in size? We found no evidence of any effect, and therefore no evidence that eye movements affect perceived size. If this is correct, then our finding has three implications. First, perceived size is much more reliant on cognitive influences than previously thought. This is consistent with the argument that visual scale is purely cognitive in nature (Linton, 2017; 2018). Second, it leads us to question whether the vergence modulation of V1 contributes to size constancy. Third, given the interaction between vergence, proprioception, and the retinal image in the Taylor illusion, it leads us to ask whether this cognitive approach could also be applied to multisensory integration.

2020 ◽  
Author(s):  
Paul Linton

AbstractSince Kepler (1604) and Descartes (1637), it’s been suggested that ‘vergence’ (the angular rotation of the eyes) plays a key role in size constancy (objects appearing to have a constant size despite changes in distance radically altering the size of the retinal image). However, this has never been tested divorced from confounding cues such as changes in the retinal image. In our experiment participants viewed a target which grew or shrank over 5 seconds. At the same time their vergence was increased from 50cm to 25cm. The question was whether this vergence increase biased the participants’ judgements of whether the target grew or shrank? We found no evidence of any bias, and therefore no evidence that eye movements affect perceived size. This finding has three important implications: First, perceived size is much more reliant on cognitive influences than previously thought. This is consistent with the argument that visual scale is purely cognitive in nature (Linton, 2017; 2018). Second, vergence modulation of V1 should no longer be thought of as a candidate mechanism for size constancy. Third, the influence of multisensory integration on visual size appears to be reliant on subjective knowledge about changes in hand and gaze position.


2020 ◽  
Author(s):  
Paul Linton

The closer an object is, the more the eyes have to rotate to fixate on it. This degree of eye rotation (or vergence) is thought to play an essential role in size constancy, the process of perceiving an object as having a constant physical size despite changes in distance. But vergence size constancy has never been tested divorced from confounding cues such as changes in the retinal image. We control for these confounding cues and find no evidence of vergence size constancy. This has three important implications. First, we need a new explanation for binocular vision's contribution to visual scale. Second, the vergence modulation of neurons in V1 can no longer be responsible for size constancy. Third, given the role attributed to vergence in multisensory integration, multisensory integration appears to be more reliant on cognitive factors than previous thought.


2018 ◽  
Vol 119 (1) ◽  
pp. 73-83 ◽  
Author(s):  
Shawn D. Newlands ◽  
Ben Abbatematteo ◽  
Min Wei ◽  
Laurel H. Carney ◽  
Hongge Luan

Roughly half of all vestibular nucleus neurons without eye movement sensitivity respond to both angular rotation and linear acceleration. Linear acceleration signals arise from otolith organs, and rotation signals arise from semicircular canals. In the vestibular nerve, these signals are carried by different afferents. Vestibular nucleus neurons represent the first point of convergence for these distinct sensory signals. This study systematically evaluated how rotational and translational signals interact in single neurons in the vestibular nuclei: multisensory integration at the first opportunity for convergence between these two independent vestibular sensory signals. Single-unit recordings were made from the vestibular nuclei of awake macaques during yaw rotation, translation in the horizontal plane, and combinations of rotation and translation at different frequencies. The overall response magnitude of the combined translation and rotation was generally less than the sum of the magnitudes in responses to the stimuli applied independently. However, we found that under conditions in which the peaks of the rotational and translational responses were coincident these signals were approximately additive. With presentation of rotation and translation at different frequencies, rotation was attenuated more than translation, regardless of which was at a higher frequency. These data suggest a nonlinear interaction between these two sensory modalities in the vestibular nuclei, in which coincident peak responses are proportionally stronger than other, off-peak interactions. These results are similar to those reported for other forms of multisensory integration, such as audio-visual integration in the superior colliculus. NEW & NOTEWORTHY This is the first study to systematically explore the interaction of rotational and translational signals in the vestibular nuclei through independent manipulation. The results of this study demonstrate nonlinear integration leading to maximum response amplitude when the timing and direction of peak rotational and translational responses are coincident.


1997 ◽  
Vol 78 (4) ◽  
pp. 1775-1790 ◽  
Author(s):  
Laura Telford ◽  
Scott H. Seidman ◽  
Gary D. Paige

Telford, Laura, Scott H. Seidman, and Gary D. Paige. Dynamics of squirrel monkey linear vestibuloocular reflex and interactions with fixation distance. J. Neurophysiol. 78: 1775–1790, 1997. Horizontal, vertical, and torsional eye movements were recorded using the magnetic search-coil technique during linear accelerations along the interaural (IA) and dorsoventral (DV) head axes. Four squirrel monkeys were translated sinusoidally over a range of frequencies (0.5–4.0 Hz) and amplitudes (0.1–0.7 g peak acceleration). The linear vestibuloocular reflex (LVOR) was recorded in darkness after brief presentations of visual targets at various distances from the subject. With subjects positioned upright or nose-up relative to gravity, IA translations generated conjugate horizontal (IA horizontal) eye movements, whereas DV translations with the head nose-up or right-side down generated conjugate vertical (DV vertical) responses. Both were compensatory for linear head motion and are thus translational LVOR responses. In concert with geometric requirements, both IA-horizontal and DV-vertical response sensitivities (in deg eye rotation/cm head translation) were related linearly to reciprocal fixation distance as measured by vergence (in m−1, or meter-angles, MA). The relationship was characterized by linear regressions, yielding sensitivity slopes (in deg⋅cm−1⋅MA−1) and intercepts (sensitivity at 0 vergence). Sensitivity slopes were greatest at 4.0 Hz, but were only slightly more than half the ideal required to maintain fixation. Slopes declined with decreasing frequency, becoming negligible at 0.5 Hz. Small responses were observed when vergence was zero (intercept), although no response is required. Like sensitivity slope, the intercept was largest at 4.0 Hz and declined with decreasing frequency. Phase lead was near zero (compensatory) at 4.0 Hz, but increased as frequency declined. Changes in head orientation, motion axis (IA vs. DV), and acceleration amplitude produced slight and sporadic changes in LVOR parameters. Translational LVOR response characteristics are consistent with high-pass filtering within LVOR pathways. Along with horizontal eye movements, IA translation generated small torsional responses. In contrast to the translational LVORs, IA-torsional responses were not systematically modulated by vergence angle. The IA-torsional LVOR is not compensatory for translation because it cannot maintain image stability. Rather, it likely compensates for the effective head tilt simulated by translation. When analyzed in terms of effective head tilt, torsional responses were greatest at the lowest frequency and declined as frequency increased, consistent with low-pass filtering of otolith input. It is unlikely that IA-torsional responses compensate for actual head tilt, however, because they were similar for both upright and nose-up head orientations. The IA-torsional and -horizontal LVORs seem to respond only to linear acceleration along the IA head axis, and the DV-vertical LVOR to acceleration along the head's DV axis, regardless of gravity.


Author(s):  
Ryan E. B. Mruczek ◽  
D. Blair Christopher ◽  
Lars Strother ◽  
Gideon P. Caplovitz

Static size contrast and assimilation illusions, such as the Ebbinghaus and Delboeuf illusions, show that the size of nearby objects in a scene can influence the perceived size of a central target. This chapter describes a dynamic variant of these classic size illusions, called the Dynamic Illusory Size-Contrast (DISC) effect. In the DISC effect, a surrounding stimulus that continuously changes size causes an illusory size change in a central target. The effect is dramatically enhanced in the presence of additional stimulus dynamics arising from eye movements or target motion. The chapter proposes that this surprisingly powerful effect of motion on perceived size depends on the degree of uncertainty inherent in the size of the retinal image of a moving object.


1978 ◽  
Vol 18 (10) ◽  
pp. 1321-1327 ◽  
Author(s):  
Arien Mack ◽  
Robert Fendrich ◽  
Joan Pleune

Sign in / Sign up

Export Citation Format

Share Document