scholarly journals Modeling of the Free-Surface Vortex-Driven Bubble Entrainment into Water

Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 709
Author(s):  
Ryan Anugrah Putra ◽  
Dirk Lucas

The recently developed GENTOP (Generalized Two Phase Flow) concept, which is based on the multifield Euler‒Euler approach, was applied to model a free-surface vortex—a flow situation that is relevant for hydraulic intake. A new bubble entrainment model has been developed and implemented in the concept. In general, satisfactory agreement with the experimental data can be achieved. However, the gas entrainment can be significantly affected by several parameters or models used in the CFD (Computational Fluid Dynamics) simulation. The scale of curvature correction C s c a l e in the turbulence model, the coefficient in the entrainment model C e n t , and the assigned bubble size to be entrained have a significant influence on the gas entrainment rate. The gas entrainment increases with higher C s c a l e values, which can be attributed to the stronger rotation captured by the simulation. A smaller bubble size gives higher gas entrainment, while a larger bubble size leads to a smaller entrainment. The results also show that the gas entrainment can be controlled by adjusting the entrainment coefficient C e n t . Based on the modeling framework presented in this paper, further improvement of the physical modeling of the entrainment process should be done.

2018 ◽  
Vol 57 (4) ◽  
pp. 475-487 ◽  
Author(s):  
Soo-Hwang Ahn ◽  
Yexiang Xiao ◽  
Zhengwei Wang ◽  
Hongying Luo ◽  
Yongyao Luo

2019 ◽  
Vol 350 ◽  
pp. 90-97 ◽  
Author(s):  
Toshiki Ezure ◽  
Kei Ito ◽  
Masaaki Tanaka ◽  
Hiroyuki Ohshima ◽  
Y. Kameyama

ACS Omega ◽  
2021 ◽  
Author(s):  
Wei An ◽  
Qingfan Zhang ◽  
Jianping Zhao ◽  
Liang Qu ◽  
Shuo Liu ◽  
...  

1974 ◽  
Vol 100 (11) ◽  
pp. 1565-1581 ◽  
Author(s):  
Larry L. Daggett ◽  
Garbis H. Keulegan

1975 ◽  
Vol 101 (11) ◽  
pp. 1449-1453
Author(s):  
James A. Weller ◽  
Akalank K. Jain ◽  
Kittur G. RangaRaju

2019 ◽  
Vol 41 (15-16) ◽  
pp. 1382-1396
Author(s):  
Mihir Prajapati ◽  
Parmod Kumar ◽  
Arup K. Das ◽  
Sushanta K. Mitra

Author(s):  
Yasuo Koizumi ◽  
Naosuke Ohte ◽  
Kamide Hideki ◽  
Shuji Ohno ◽  
Kei Ito

A sodium-cooled fast breeder reactor is now at the developing stage in Japan. One concern for safety is cover gas entrainment into the sodium coolant. The gas entrainment rate into liquid by the vortex formed on the free surface was examined experimentally. Liquid flowed into a cylindrical vessel from a wall tangentially. Swirl flow was formed in the vessel, and then liquid drained from the bottom outlet of the vessel. A hollow vortex was formed on the free surface in the test vessel. Air was entrained under the free surface of the vortex and carried away from the bottom of the vessel. The flow state of the gas entrainment was visually observed by using a high speed video camera. The gas entrainment rate into liquid was measured. In the present experiments, test fluid was changed from water in the previous experiments to 20 cSt silicone oil. The liquid level in the test vessel was 25 mm in the present experiments. Only the vortex-type gas-entrainment was observed as in the previous experiments since the liquid level was low. The flow state observed at the flow visualization section of the outlet pipe was only a semi-annular flow. The initiation of the gas entrainment was delayed in the case of silicone oil compared with the case of water. The increasing rate of the gas entrainment to the liquid velocity is milder in the case of silicone oil than in the case of water.


2016 ◽  
Vol 22 (1) ◽  
pp. 136-142 ◽  
Author(s):  
Seung-Jin Lee ◽  
Sang-Joon Kim ◽  
Hae-Geon Lee

Sign in / Sign up

Export Citation Format

Share Document