test fluid
Recently Published Documents


TOTAL DOCUMENTS

214
(FIVE YEARS 45)

H-INDEX

18
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Dante Guerra ◽  
Deron Arceneaux ◽  
Ding Zhu ◽  
A. D. Hill

Abstract Presently, two-phase flow behavior through propped and unpropped fractures is poorly understood, and due to this fact, reservoir modeling using numerical simulation for the domain that contains fractures typically assumes straight-line relative permeability curves and zero capillary pressure in the fractures. However, there have been several studies demonstrating that both viscous and capillary dominated flow can be expected in fractured reservoirs, where non-linear fracture relative permeabilities must be used to accurately model these reservoirs. The objective of this study is to develop an understanding of the relative permeability of oil-water systems in fractures through experimental study. The experimental measurements conducted in this study were done using downhole cores from the Wolfcamp and the Eagle Ford Shale formations. The cores were cut to 1.5-in diameter and 6-in length testing samples. The specimens are saw-cut to generate a fracture along each sample first, and then conditioned in the reservoir fluid at the reservoir temperature for a minimum of 30 days prior to any testing. Wolfcamp and Eagle Ford formation oil and reconstituted brine with and without surfactants are used as the test fluids. The measurements were recorded at effective fracture closure stress and reservoir temperature. Also, real-time measurements of density, pressure, and flow rate are recorded throughout the duration of each test. Fluid saturation within the fracture was calculated using the mass continuity equation. The oil-water relative permeability was measured using the steady-state method. All measurements were conducted at reservoir temperature and at representative effective fracture closure stress. The data from the experimental measurements was analyzed using Darcy's law, and a clear relationship between relative permeability and saturation was observed. The calculated relative permeability curves closely follow the generalized Brooks-Corey correlation for oil-water systems. Furthermore, there was a significant difference in the relative permeability curves between the oil-water only systems and the oil-water surfactant systems. The result of this study is useful for estimating the expected oil production more realistically. It also provides information about the effect of surfactants on oil-water relative permeability for optimal design of fracture fluids.


2021 ◽  
Author(s):  
Thenuka M. Ariyaratna ◽  
Nihal U. Obeyesekere ◽  
Tharindu S. Jayaneththi ◽  
Jonathan J. Wylde

Abstract A need for more economic drilling fluids has been addressed by repurposing heavy brines typically used as completion fluids. Heavy brine corrosion inhibitors have been designed for stagnant systems. Drilling fluids are subjected to both heavy agitation and aeration through recirculation systems and atmospheric exposure during the various stages of the drilling process. This paper documents the development of heavy brine corrosion inhibitors to meet these additional drilling fluid requirements. Multiple system scenarios were presented requiring a methodical evaluation of corrosion inhibitor specifications while still maintaining performance. Due to the high density of heavy brine, traditional methods of controlling foaming were not feasible or effective. Additional product characteristics had to be modified to allow for the open mud pits where employees would be working, higher temperatures, contamination from drill cuttings, and product efficacy reduction due to absorption from solids. The product should not have any odor, should have a high flash point, and mitigate corrosion in the presence of drill cuttings, oxygen, and sour gases. Significant laboratory development and testing were done in order to develop corrosion inhibitors for use in heavy brines based on system conditions associated with completion fluids. The application of heavy brine as a drilling fluid posed new challenges involving foam control, solubility, product stability, odor control, and efficacy when mixed with drill cuttings. The key to heavy brine corrosion inhibitor efficacy is solubility in a supersaturated system. The solvent packages developed to be utilized in such environments were highly sensitive and optimized for stagnant and sealed systems. Laboratory testing was conducted utilizing rotating cylinder electrode tests with drill cuttings added to the test fluid. Product components that were found to have strong odors or low flash points were removed or replaced. Extensive foaming evaluations of multiple components helped identify problematic chemistries. Standard defoamers failed to control foaming but the combination of a unique solvent system helped to minimize foaming. The evaluations were able to minimize foaming and yield a low odor product that was suitable for open mud pits and high temperatures without compromising product efficacy. The methodology developed to transition heavy brine corrosion inhibitors from well completion applications to drilling fluid applications proved to be more complex than initially considered. This paper documents the philosophy of this transitioning and the hurdles that were overcome to ensure the final product met the unique system guidelines. The novel use of heavy brines as drilling fluids has created a need for novel chemistries to inhibit corrosion in a new application.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 198-199
Author(s):  
Claire N Southerland ◽  
Joel Yelich ◽  
Bret Taylor ◽  
Melinda Ellison

Abstract Rams exhibit varying levels of sensitivity to phenylthiocarbamide (PTC), which has been correlated with the ability to perceive bitter-tasting foods. Previously, the only procedure for measuring PTC-sensitivity in rams involved a 9-d test phase with 5 PTC concentrations. The objective of this experiment was to develop a more streamlined approach for identifying and classifying rams on extreme ends of the bitter-tasting spectrum. Mature Targhee, Rambouillet, Polypay, and Composite-breed rams (n = 44), housed in three separate barns, and subjected to 4-d acclimation, 2-d sham, and 2-d testing phases. The 2-d sham phase was conducted to determine if ethanol-spiked water (delivery vehicle for PTC) influenced voluntary fluid intake; no effect (P = 0.16) was observed. The 2-d test phase was a side-by-side preference study between water (control; 3.0 kg) and 1 of 2 concentrations (0.2 and 2.0 mM) of PTC solution (3.0 kg) delivered on alternate days. Average consumption of PTC as a percentage of total test fluid intake was used determine taster status. No PTC-treatment effect (P ≥ 0.23) was observed, but within each treatment level, PTC intake was less (P < 0.001) than water intake. Classification levels of PTC consumption were determined by ± 1.0 standard deviation of the mean and used to classify rams into non- (n = 9; 61.5 ± 3.9%), intermediate- (n = 29; 40.7 ± 1.8%), or super- (n = 6; 15.6 ± 3.3%) PTC tasting groups, which were different (P < 0.001) from each other. Likewise, water consumption intakes were different (P< 0.001) between the non- (38.5 ± 3.9%), intermediate- (59.3 ± 1.8%), and super- (84.4 ± 3.3%) PTC tasting groups. The methods outlined in this study will facilitate further research focused on the influence of bitter tasting sensitivities on the dietary preferences of sheep.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5981
Author(s):  
Gianluca Coccia ◽  
Alessia Aquilanti ◽  
Sebastiano Tomassetti ◽  
Pio Francesco Muciaccia ◽  
Giovanni Di Di Nicola

Sugar alcohols have interesting thermodynamic properties that make them good options as heat storage materials (HSMs) to be used in solar cookers. Among sugar alcohols, xylitol is affected by severe supercooling that can significantly alter its usefulness in thermal energy storage (TES) systems. To overcome the supercooling issue, in this work the thermal behavior of a xylitol-based TES installed in a portable solar box cooker was investigated experimentally. The solar cooker has a 4.08 concentration ratio and the TES is a double-pot system filled with 2.5 kg of commercial-grade xylitol. The TES includes a manual mixing device that can be used to trigger the nucleation of xylitol. The effectiveness of the TES system with and without triggering was assessed through several outdoor tests, divided into heating and cooling phases, using silicone oil as absorbing media. It was found that the average load cooling time, in the temperature range of the test fluid from 110 to 80∘C, increased by about 346% when the solar cooker was equipped with the xylitol-triggered TES. The mixing device can therefore be considered an effective solution for regarding xylitol as an actual and performing phase change material.


2021 ◽  
Vol 11 (16) ◽  
pp. 7260
Author(s):  
Yang Jun Kang

Determination of blood viscosity requires consistent measurement of blood flow rates, which leads to measurement errors and presents several issues when there are continuous changes in hematocrit changes. Instead of blood viscosity, a coflowing channel as a pressure sensor is adopted to quantify the dynamic flow of blood. Information on blood (i.e., hematocrit, flow rate, and viscosity) is not provided in advance. Using a discrete circuit model for the coflowing streams, the analytical expressions for four properties (i.e., pressure, shear stress, and two types of work) are then derived to quantify the flow of the test fluid. The analytical expressions are validated through numerical simulations. To demonstrate the method, the four properties are obtained using the present method by varying the flow patterns (i.e., constant flow rate or sinusoidal flow rate) as well as test fluids (i.e., glycerin solutions and blood). Thereafter, the present method is applied to quantify the dynamic flows of RBC aggregation-enhanced blood with a peristaltic pump, where any information regarding the blood is not specific. The experimental results indicate that the present method can quantify dynamic blood flow consistently, where hematocrit changes continuously over time.


Author(s):  
Elias Arian ◽  
Werner Pauer

AbstractFor the first time, micromixing characterization for the Villermaux–Dushman reaction could be performed with a non-reactive viscous medium at viscosities up to 2 Pas. As viscous medium, sucrose solution was used with the benefit of being a Newtonian fluid with tuneable viscosity. Due to the higher viscosities in comparison to established media for micromixing investigations, a new protocol for the experimental implementation was developed. Micromixing experiments were conducted and the applicability of viscous sucrose solutions was proven in a stirred tank reactor. Major challenges in characterizing micromixing efficiency in high viscous solution were consolidated.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chiara Robba ◽  
Antonio Messina ◽  
Denise Battaglini ◽  
Lorenzo Ball ◽  
Iole Brunetti ◽  
...  

Background: Coronavirus disease 2019 (COVID-19) patients are at high risk of neurological complications consequent to several factors including persistent hypotension. There is a paucity of data on the effects of therapeutic interventions designed to optimize systemic hemodynamics on cerebral autoregulation (CA) in this group of patients.Methods: Single-center, observational prospective study conducted at San Martino Policlinico Hospital, Genoa, Italy, from October 1 to December 15, 2020. Mechanically ventilated COVID-19 patients, who had at least one episode of hypotension and received a passive leg raising (PLR) test, were included. They were then treated with fluid challenge (FC) and/or norepinephrine (NE), according to patients' clinical conditions, at different moments. The primary outcome was to assess the early effects of PLR test and of FC and NE [when clinically indicated to maintain adequate mean arterial pressure (MAP)] on CA (CA index) measured by transcranial Doppler (TCD). Secondary outcomes were to evaluate the effects of PLR test, FC, and NE on systemic hemodynamic variables, cerebral oxygenation (rSo2), and non-invasive intracranial pressure (nICP).Results: Twenty-three patients were included and underwent PLR test. Of these, 22 patients received FC and 14 were treated with NE. The median age was 62 years (interquartile range = 57–68.5 years), and 78% were male. PLR test led to a low CA index [58% (44–76.3%)]. FC and NE administration resulted in a CA index of 90.8% (74.2–100%) and 100% (100–100%), respectively. After PLR test, nICP based on pulsatility index and nICP based on flow velocity diastolic formula was increased [18.6 (17.7–19.6) vs. 19.3 (18.2–19.8) mm Hg, p = 0.009, and 12.9 (8.5–18) vs. 15 (10.5–19.7) mm Hg, p = 0.001, respectively]. PLR test, FC, and NE resulted in a significant increase in MAP and rSo2.Conclusions: In mechanically ventilated severe COVID-19 patients, PLR test adversely affects CA. An individualized strategy aimed at assessing both the hemodynamic and cerebral needs is warranted in patients at high risk of neurological complications.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Goran M. Stojanović ◽  
Tijana Kojić ◽  
Mitar Simić ◽  
Milan Radovanović ◽  
Sanja Panić ◽  
...  

This article presents a compact, low-cost, robust, and flexible test platform for determining the concentration of drugs in fluids. This device is based on a PVC foil card containing copper conductive foils in which disposable paper test strips are inserted. The paper test strips are overlaid with deposition of multiwalled carbon nanotubes (MWCNTs) acting as a sensing layer. When a paper test strip is inserted into the test card, the conductive path between two copper lines is established. A drop of test fluid on the sensing MWCNT layer changes the conductivity in a concentration-dependent manner, enabling calculation of the drug concentration after measurement of the electrical resistance at the copper terminals. An equivalent electrical circuit was also proposed to model the response of the fabricated sensor. It was shown that model parameters are dependent on the concentration of the cytostatic drug methotrexate. Additionally, the fabricated sensor demonstrated the ability to differentiate the same concentration of methotrexate and cyclophosphamide. The complete readout electronics and polynomial transfer function for calculating drug concentrations were also developed and are presented.


2021 ◽  
Author(s):  
Min Zhang ◽  
Dara W. Childs

Abstract In recent years, multiphase pumps have become more and more popular because of the capability to simplify the process, reduce the footprint, and lower the cost. To compensate for the axial thrust force, an annular seal is normally used as a balance piston seal, and the labyrinth seal is one of the choices. A typical labyrinth seal consists of a surface with teeth and a smooth surface. The teeth are either on the rotor or the stator. To protect the machine, one side (either the teeth or the smooth surface) is made of a material that can be safely sacrificed during a rub. After the rub, the teeth clearance is increased. This paper studies the impact of the increased teeth clearance on the performance of the labyrinth seal under oil-rich bubbly flow conditions. The test fluid is a mixture of silicone oil (PSF 5cSt) and air with inlet Gas Volume Fraction GVF up to 9%. Tests are conducted with pressure drop PD = 34.5 bars, rotor speed ω = 5 krpm, and radial tooth clearance Cr = 0.102 mm and 0.178 mm. Test results show that, for all test conditions (before and after injecting air bubbles into the oil flow), increasing Cr from 0.102 mm to 0.178 mm increases the mass flow rate by about 40% but barely changes the test seal’s rotordynamic coefficients; i.e., the increased tooth clearance would not change the pump vibration performance.


2021 ◽  
Author(s):  
Mohammad Ebrahim Poulad

A time-average technique was developed to measure the unsteady and turbulent free convection heat transfer in tall vertical enclosure using a Mach-Zehnder interferometer. The method used a digital high speed camera to obtain the time-averaged heat transfer rates. Optical heat transfer measurements were made in a differentially heated vertical cavity with isothermal walls. The cavity widths (distance between the plates) were L = 12.7, 32.3, 40, and 56.2 mm. The corresponding Rayleigh numbers were about 3X10[superscript] 3, 5 X 10⁴, 1 X 10⁵, 2.7. X 10⁵, respectively and the enclosure aspect ratio ranged from A=18 to 76. The test fluid was air and the temperature differential was about 15 K for all the measurements. Finite fringe interferograms were taken with a high speed camera. Interferograms of the fluctuating temperature field were captured for ten seconds at a frequency of 100Hz. These images were enhanced and processed using MATLAB to measure the local time-averaged heat transfer rate. This time-averaged heat flux was measured at many locations along the vertical cavity walls in order to obtain the spatial average. To validate the proposed technique, the average Nusselt number was compared to measured values and correlations from the literature. In both laminar and turbulent flow conditions, the current measurements compared well with the ElSherbiny correlation.


Sign in / Sign up

Export Citation Format

Share Document