scholarly journals Hydro-Economic Modelling for Water-Policy Assessment Under Climate Change at a River Basin Scale: A Review

Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1559 ◽  
Author(s):  
Alfonso Expósito ◽  
Felicitas Beier ◽  
Julio Berbel

Hydro-economic models (HEMs) constitute useful instruments to assess water-resource management and inform water policy. In the last decade, HEMs have achieved significant advances regarding the assessment of the impacts of water-policy instruments at a river basin or catchment level in the context of climate change (CC). This paper offers an overview of the alternative approaches used in river-basin hydro-economic modelling to address water-resource management issues and CC during the past decade. Additionally, it analyses how uncertainty and risk factors of global CC have been treated in recent HEMs, offering a discussion on these last advances. As the main conclusion, current challenges in the realm of hydro-economic modelling include the representation of the food-energy-water nexus, the successful representation of micro-macro linkages and feedback loops between the socio-economic model components and the physical side, and the treatment of CC uncertainties and risks in the analysis.

Author(s):  
Bruce Keith ◽  
David N Ford ◽  
Radley Horton

The purpose of this study is to evaluate simulated fill rate scenarios for the Grand Ethiopian Renaissance Dam while taking into account plausible climate change outcomes for the Nile River Basin. The region lacks a comprehensive equitable water resource management strategy, which creates regional security concerns and future possible conflicts. We employ climate estimates from 33 general circulation models within a system dynamics model as a step in moving toward a feasible regional water resource management strategy. We find that annual reservoir fill rates of 8–15% are capable of building hydroelectric capacity in Ethiopia while concurrently ensuring a minimum level of stream flow disruption into Egypt before 2039. Insofar as climate change estimates suggest a modest average increase in stream flow into the Aswan, climate changes through 2039 are unlikely to affect the fill rate policies. However, larger fill rates will have a more detrimental effect on stream flow into the Aswan, particularly beyond a policy of 15%. While this study demonstrates that a technical solution for reservoir fill rates is feasible, the corresponding policy challenge is political. Implementation of water resource management strategies in the Nile River Basin specifically and Africa generally will necessitate a national and regional willingness to cooperate.


Author(s):  
R. T. Montes-Rojas ◽  
J. E. Ospina-Noreña ◽  
C. Gay-García ◽  
C. Rueda-Abad ◽  
I. Navarro-González

Author(s):  
Jhones Da Silva Amorim ◽  
Rubens Junqueira ◽  
Vanessa Alves Mantovani ◽  
Marcelo Ribeiro Viola ◽  
Carlos Rogério de Mello ◽  
...  

 Maximum and minimum streamflow are fundamental for water resource management, especially for water rights. However, lack of monitoring and scarce streamflow data limit such studies. Streamflow regionalization is a useful tool to overcome these limitations. The study developed models for regionalization of the maximum and minimum reference streamflows for the Mortes River Basin (MRB) (Water Resources Planning and Management Unit - GD2), Southern Minas Gerais State. The study used long-term streamflow historical series provided by the Brazilian National Water Agency (ANA). Previous exploratory analysis was performed, and it was observed that the streamflow series are stationary according to the Mann-Kendall test. The estimation of the streamflow for different return periods (RP) was performed by fitting Probability Density Functions (PDFs) that were tested by the Anderson-Darling (AD) test. The Generalized Extreme Values (GEV) and Wakeby were the most appropriate PDFs for maximum and minimum streamflows, respectively. The streamflow models were fitted using a power regression procedure, considering the drainage area of the watersheds as inputs. The fittings reached the coefficient of determination (R2) greater than 0.90. Thus, the streamflow regionalization models demonstrated good performance and are a potential tool to be used for water resource management in the studied basin.


Sign in / Sign up

Export Citation Format

Share Document