Hydro-Geomorphology and Hydrogeology of the Pennar River Basin, India: Implications on Basin Scale Surface and Ground Water Resource Management

Author(s):  
M. Sambasiva Rao ◽  
G. Rambabu
1987 ◽  
Vol 19 (9) ◽  
pp. 97-106
Author(s):  
J. J. Vasconcelos

Hater resource managers in semi-arid regions are faced with some unique problems. The wide variations in precipitation and stream flows in semi-arid regions increase man's dependence on the ground water resource for an ample and reliable supply of water. Proper management of the ground water resource is absolutely essential to the economic well being of semi-arid regions. Historians have discovered the remains of vanished advanced civilizations based on irrigated agriculture which were ignorant of the importance of proper ground water resource management. In the United States a great deal of effort is presently being expended in the study and control of toxic discharges to the ground water resource. What many public policy makers fail to understand is that the potential loss to society resulting from the mineralization of the ground water resource is potentially much greater than the loss caused by toxic wastes discharges, particularly in developing countries. Appropriations for ground water resource management studies in developed countries such as the United States are presently much less than those for toxic wastes management and should be increased. It is the reponsibility of the water resource professional to emphasize to public policy makers the importance of ground water resource management. Applications of ground water resource management models in the semi-arid Central Valley of California are presented. The results demonstrate the need for proper ground water resource management practices in semi-arid regions and the use of ground water management models as a valuable tool for the water resource manager.


Ground Water ◽  
1994 ◽  
Vol 32 (6) ◽  
pp. 917-928 ◽  
Author(s):  
Amitabha Mukhopadhyay ◽  
Jawad Al-Sulaimi ◽  
Jean Marie Barrat

Ground Water ◽  
1979 ◽  
Vol 17 (6) ◽  
pp. 544-549 ◽  
Author(s):  
Carl A. P. Fricke ◽  
Darryll T. Pederson

Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1559 ◽  
Author(s):  
Alfonso Expósito ◽  
Felicitas Beier ◽  
Julio Berbel

Hydro-economic models (HEMs) constitute useful instruments to assess water-resource management and inform water policy. In the last decade, HEMs have achieved significant advances regarding the assessment of the impacts of water-policy instruments at a river basin or catchment level in the context of climate change (CC). This paper offers an overview of the alternative approaches used in river-basin hydro-economic modelling to address water-resource management issues and CC during the past decade. Additionally, it analyses how uncertainty and risk factors of global CC have been treated in recent HEMs, offering a discussion on these last advances. As the main conclusion, current challenges in the realm of hydro-economic modelling include the representation of the food-energy-water nexus, the successful representation of micro-macro linkages and feedback loops between the socio-economic model components and the physical side, and the treatment of CC uncertainties and risks in the analysis.


Author(s):  
Jhones Da Silva Amorim ◽  
Rubens Junqueira ◽  
Vanessa Alves Mantovani ◽  
Marcelo Ribeiro Viola ◽  
Carlos Rogério de Mello ◽  
...  

 Maximum and minimum streamflow are fundamental for water resource management, especially for water rights. However, lack of monitoring and scarce streamflow data limit such studies. Streamflow regionalization is a useful tool to overcome these limitations. The study developed models for regionalization of the maximum and minimum reference streamflows for the Mortes River Basin (MRB) (Water Resources Planning and Management Unit - GD2), Southern Minas Gerais State. The study used long-term streamflow historical series provided by the Brazilian National Water Agency (ANA). Previous exploratory analysis was performed, and it was observed that the streamflow series are stationary according to the Mann-Kendall test. The estimation of the streamflow for different return periods (RP) was performed by fitting Probability Density Functions (PDFs) that were tested by the Anderson-Darling (AD) test. The Generalized Extreme Values (GEV) and Wakeby were the most appropriate PDFs for maximum and minimum streamflows, respectively. The streamflow models were fitted using a power regression procedure, considering the drainage area of the watersheds as inputs. The fittings reached the coefficient of determination (R2) greater than 0.90. Thus, the streamflow regionalization models demonstrated good performance and are a potential tool to be used for water resource management in the studied basin.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2661
Author(s):  
Yongfen Zhang ◽  
Chongjun Tang ◽  
Aizhong Ye ◽  
Taihui Zheng ◽  
Xiaofei Nie ◽  
...  

Quantitatively figuring out the effects of climate and land-use change on water resources and their components is essential for water resource management. This study investigates the effects of climate and land-use change on blue and green water and their components in the upper Ganjiang River basin from the 1980s to the 2010s by comparing the simulated changes in blue and green water resources by using a Soil and Water Assessment Tool (SWAT) model forced by five climate and land-use scenarios. The results suggest that the blue water flow (BWF) decreased by 86.03 mm year−1, while green water flow (GWF) and green water storage (GWS) increased by 8.61 mm year−1 and 12.51 mm year−1, respectively. The spatial distribution of blue and green water was impacted by climate, wind direction, topography, and elevation. Climate change was the main factor affecting blue and green water resources in the basin; land-use change had strong effects only locally. Precipitation changes significantly amplified the BWF changes. The proportion of surface runoff in BWF was positively correlated with precipitation changes; lateral flow showed the opposite tendency. Higher temperatures resulted in increased GWF and decreased BWF, both of which were most sensitive to temperature increases up to 1 °C. All agricultural land and forestland conversion scenarios resulted in decreased BWF and increased GWF in the watershed. GWS was less affected by climate and land-use change than GWF and BWF, and the trends in GWS were not significant. The study provides a reference for blue and green water resource management in humid areas.


Sign in / Sign up

Export Citation Format

Share Document