Winter maintenance equipment. Road weather information systems

2015 ◽  
2015 ◽  
Vol 10 (3) ◽  
pp. 262-268 ◽  
Author(s):  
Lina Juknevičiūtė-Žilinskienė ◽  
Alfredas Laurinavičius

Seeking to reduce a negative impact of unfavourable weather conditions on road traffic, many countries introduce modern technologies allowing to objectively assessing meteorological conditions of roads. The world over, data from the automated meteorological stations of Road Weather Information System have been long ago used on a significantly larger scale than only for the organization of road maintenance works. International experience of introducing Road Traffic Information Systems in European Union and other countries of the world shows that Road Weather Information Systems give good results for increasing road safety, improving the level of road user information and solving the road construction issues. Road Weather Information System is a system of technologies and decision-making using historical and real-time data of roads and weather conditions. The collected and processed multi-year data from meteorological stations is a great assistance in designing or reconstructing road pavement structures. Road pavement structure is highly affected by a negative air temperature and frozen ground. The impact of negative temperature is expressed by the thickness of frost blanket course. The thickness of frost blanket course depends on a frost susceptibility of soil. To determine the thickness of frost blanket course it is necessary to assess the frost impact, therefore it was up to the purpose − climatic distribution of regions the territory of Lithuania according to the distribution of frost impact and the depth of frozen ground. Based on climatic maps compiled, a correction of the thickness of road pavement structure was suggested.


2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Xu Wang ◽  
Lian Gu ◽  
Tae J. Kwon ◽  
Tony Z. Qiu

Inclement weather acutely affects road surface and driving conditions and can negatively impact traffic mobility and safety. Highway authorities have long been using road weather information systems (RWISs) to mitigate the risk of adverse weather on traffic. The data gathered, processed, and disseminated by such systems can improve both the safety of the traveling public as well as the effectiveness of winter road maintenance operations. As the road authorities continue to invest in expanding their existing RWIS networks, there is a growing need to determine the optimal deployment strategies for RWISs. To meet such demand, this study presents an innovative geostatistical approach to quantitatively analyze the spatiotemporal variations of the road weather and surface conditions. With help of constructed semivariograms, this study quantifies and examines both the spatial and temporal coverage of RWIS data. A case study of Alberta, which is one of the leaders in Canada in the use of RWISs, was conducted to indicate the reliability and applicability of the method proposed herein. The findings of this research offer insight for constructing a detailed spatiotemporal RWIS database to manage and deploy different types of RWISs, optimize winter road maintenance resources, and provide timely information on inclement road weather conditions for the traveling public.


Sign in / Sign up

Export Citation Format

Share Document