Portable equipment for projecting extinguishing agents supplied by firefighting pumps. Portable foam equipment

2018 ◽  
Keyword(s):  
Author(s):  
Sarah N. Redmond ◽  
Basya S. Pearlmutter ◽  
Yilen K. Ng-Wong ◽  
Heba Alhmidi ◽  
Jennifer L. Cadnum ◽  
...  

Abstract Objective: To investigate the timing and routes of contamination of the rooms of patients newly admitted to the hospital. Design: Observational cohort study and simulations of pathogen transfer. Setting: A Veterans’ Affairs hospital. Participants: Patients newly admitted to the hospital with no known carriage of healthcare-associated pathogens. Methods: Interactions between the participants and personnel or portable equipment were observed, and cultures of high-touch surfaces, floors, bedding, and patients’ socks and skin were collected for up to 4 days. Cultures were processed for Clostridioides difficile, methicillin-resistant Staphylococcus aureus (MRSA), and vancomycin-resistant enterococci (VRE). Simulations were conducted with bacteriophage MS2 to assess plausibility of transfer from contaminated floors to high-touch surfaces and to assess the effectiveness of wearing slippers in reducing transfer. Results: Environmental cultures became positive for at least 1 pathogen in 10 (59%) of the 17 rooms, with cultures positive for MRSA, C. difficile, and VRE in the rooms of 10 (59%), 2 (12%), and 2 (12%) participants, respectively. For all 14 instances of pathogen detection, the initial site of recovery was the floor followed in a subset of patients by detection on sock bottoms, bedding, and high-touch surfaces. In simulations, wearing slippers over hospital socks dramatically reduced transfer of bacteriophage MS2 from the floor to hands and to high-touch surfaces. Conclusions: Floors may be an underappreciated source of pathogen dissemination in healthcare facilities. Simple interventions such as having patients wear slippers could potentially reduce the risk for transfer of pathogens from floors to hands and high-touch surfaces.


1975 ◽  
Vol 13 (6) ◽  
pp. 368-368
Author(s):  
Thomas Mitchell
Keyword(s):  

2020 ◽  
pp. 58-63
Author(s):  
M. M. Sidorov ◽  
N. I. Golikov ◽  
R. P. Tihonov

The work evaluates the stress deformed state of the section of the interfield gas collecting main, running in permanently frozen grounds. The object of research is a section of a pipeline with an arched discharge formed as a result of loss of stability as a result of thermal erosion of permanently frozen grounds to disturbance of the vegetation cover. The determination of stresses was carried out by the X-ray method using portable equipment. The experimental data were analyzed with the calculated. The calculated data were obtained by measuring the spatial position of the gas pipeline section. The obtained values of the acting stresses and the estimates of the critical indicators of the gas pipeline monitoring section made it possible to reasonably estimate the stress state. The methodology for determining the acting stresses of pipelines using portable X-ray equipment can be successfully applied to estimate the stressed-deformed state of pipeline systems running in the zone of permafrost.


Sign in / Sign up

Export Citation Format

Share Document