Textile fibres - Determination of breaking force and elongation at break of individual fibres

2020 ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 387-393
Author(s):  
Eglė Kumpikaitė ◽  
Indrė Tautkutė-Stankuvienė ◽  
Dovilė Redeckienė

Abstract The main parameters of tensile tests for fabrics and yarns are the breaking force and the elongation at break. The aim of this investigation was to find the relation between the tensile properties of yarns and woven fabrics for different natural raw materials. Manmade bamboo, natural single flax, blended plied flax and natural silk yarns, plied combed cotton yarns, blended plied cotton, and polyester yarns were used for the research. The warp of almost all fabrics, except of one fabric, was from flax. This fabric was woven using blended flax and silk yarns in the warp. Weft yarns were more various – yarns of one kind were used in the weft for certain fabrics; yarns of two kinds were used in 1:1 repeats in other fabrics. It was established that the breaking force for both woven fabrics and yarns increases when the elongation at break increases. The relationships between the tensile parameters of yarns and woven fabrics were established. The results showed weak dependence between the tensile parameters of yarns and fabrics because the coefficients of determination of the dependences are small.


2014 ◽  
Vol 42 (4) ◽  
pp. 290-304
Author(s):  
Rajarajan Aiyengar ◽  
Jyoti Divecha

ABSTRACT The blends of natural rubber (NR), polybutadiene rubber (BR), and other forms of rubbers are widely used for enhancing the mechanical and physical properties of rubber compounds. Lots of work has been done in conditioning and mixing of NR/BR blends to improve the properties of its rubber compounds and end products such as tire tread. This article employs response surface methodology designed experiments in five factors; high abrasion furnace carbon black (N 330), aromatic oil, NR/BR ratio, sulfur, and N-oxydiethylene-2-benzothiazole sulfenamide for determination of combined and second order effects of the significant factors leading to simultaneous optimization of the NR/BR blend system. One of the overall optimum of eight properties existed at carbon 44 phr, oil 6.1 phr, NR/BR 78/22 phr with the following values of properties: tensile strength (22 MPa), elongation at break (528%), tear resistance (30 kg/mm), rebound resilience (67%), moderate hardness (68 International rubber hardness degrees) with low heat buildup (17 °C), permanent set (12%), and abrasion loss (57 mm3). More optimum combinations can easily be determined from the NR/BR blend system models contour plots.


Sign in / Sign up

Export Citation Format

Share Document