woven fabrics
Recently Published Documents


TOTAL DOCUMENTS

2181
(FIVE YEARS 586)

H-INDEX

50
(FIVE YEARS 7)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 584
Author(s):  
Agnieszka Brochocka ◽  
Aleksandra Nowak ◽  
Paweł Kozikowski

In this article, we present polymer non-woven fabrics with the addition of carbon sorbents being tested to estimate the breakthrough time and efficient protection against vapors present in smog. For this purpose, three substances were selected, which constitute an inhalation hazard and are smog components: cyclohexane, toluene, and sulfur dioxide. It was demonstrated that an increased quantity of carbon sorbent in polymeric filters significantly prolongs the breakthrough time. However, high sorbent quantities may increase the filter surface mass and air flow resistance. To optimize the protective parameters with functionality, a compromise between the two has to be found. By comparing the breakthrough times for different carbon sorbent quantities, the optimal filter composition was elaborated. The analyzed non-woven fabrics were manufactured by the melt-blown process and filled with ball-milled carbon sorbents supplied directly into the fabric blowing nozzle. Both protective performance and textural properties were analyzed for two commercially available carbon sorbents. Furthermore, it was proven that high values of sorbent-specific surface area translates directly into greater filter performance.


Author(s):  
Melek Ayadi ◽  
Riadh Zouari ◽  
César Ségovia ◽  
Ayda Baffoun ◽  
Slah Msahli ◽  
...  

As the need to ensure thermal comfort in buildings is constantly evolving, new technologies continue to emerge with the aim to develop efficient thermal insulation materials. This study aims to explore a textile technology using Airlaid process to develop non-woven fabrics made of natural fibers extracted from Posidonia Oceanica’s waste for assessing their suitability for insulation products in construction field. This technology offers the feature to develop isotropic non-woven structures by orienting randomly the fibers on the fabric surface. The web composed of a mixture of Posidonia Oceanica fibers and a proportion of thermoplastic fibers is then thermally bonded in an oven followed by cooling in order to ensure the solidification of the bonding areas. The prepared panels are then analyzed for the thermal conductivity. It was found that their thermal conductivity is close to commonly used thermal insulation materials, ranging between 0.03515 W/m.K and 0.03957 W/m.K, which allows the non-woven panels to compete with widely-used insulation materials for building’s field. The second part of this work aims to determinate the Posidonia panel's resistance to five common mold types in buildings (Aspergillus niger, Penicilumfuniculosum, Trichoderma viride, Chaetomium globosum, Paecilomycesvariotii). In fact, at high moisture content, molds are likely to develop on cellulosic materials affecting indoor air quality and eventually causing a variety of health risks to occupants. However, optic microscope results showed no growth of molds on the Posidonia samples which allows conceiving reliable thermal insulation materials.


2022 ◽  
Vol 6 (1) ◽  
pp. 18
Author(s):  
James Clarke ◽  
Alistair McIlhagger ◽  
Dorian Dixon ◽  
Edward Archer ◽  
Glenda Stewart ◽  
...  

Lack of cost information is a barrier to acceptance of 3D woven preforms as reinforcements for composite materials, compared with 2D preforms. A parametric, resource-based technical cost model (TCM) was developed for 3D woven preforms based on a novel relationship equating manufacturing time and 3D preform complexity. Manufacturing time, and therefore cost, was found to scale with complexity for seventeen bespoke manufactured 3D preforms. Two sub-models were derived for a Weavebird loom and a Jacquard loom. For each loom, there was a strong correlation between preform complexity and manufacturing time. For a large, highly complex preform, the Jacquard loom is more efficient, so preform cost will be much lower than for the Weavebird. Provided production is continuous, learning, either by human agency or an autonomous loom control algorithm, can reduce preform cost for one or both looms to a commercially acceptable level. The TCM cost model framework could incorporate appropriate learning curves with digital twin/multi-variate analysis so that cost per preform of bespoke 3D woven fabrics for customised products with low production rates may be predicted with greater accuracy. A more accurate model could highlight resources such as tooling, labour and material for targeted cost reduction.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Kura Alemayehu Beyene ◽  
Wassie Mengie ◽  
Chirato Godana Korra

Purpose The purpose of this study is to investigate the effects of weft yarn diameter and pick density on the properties of surface roughness (SMD) of 3/1 (Z) twill-woven fabrics in three measurement directions weft (0°), the warp (90°) and the diagonal (45°). Design/methodology/approach Nine 3/1 (Z) twill samples were prepared with two factors and three levels and their roughness values were measured in the weft (0°), warp (90°) and diagonal (45°) directions of 3/1 (Z) twill fabrics using the Kawabata-FB4 instrument. Analysis of variance (ANOVA) is used to determine the effect of weft yarn diameter and pick density on SMD properties and comparisons were done in the weft (0°), the warp (90°) and the diagonal (45°) directions. Findings From experimental analysis, weft yarn diameter and pick density affect SMD of 3/1 (Z) twill-woven fabrics in both diagonal (45°) and weft (0°) directions but slightly affect warp (90°) direction. Maximum SMD values were observed in diagonal (45°) directions and the minimum was in warp (90°) directions of fabrics. Weft yarn diameter and pick density are statistically significant on SMD values of 3/1 (Z) twill-woven fabrics for three directions at a 95% confidence interval. Parameter variation in weft directions of 3/1 (Z) twill-woven fabrics also varies SMD values in three directions measurements Originality/value The findings of this study can be usually used for textile technology, industries and laboratories to create a basic understanding for measuring roughness properties of 3/1 (Z) twill fabric. It is also possible to identify the surface characterizations in different directions of measurement for their usage in some specific areas of end application like consumer goods, home textiles, technical textiles, etc.


2021 ◽  
Vol 1 (4) ◽  
pp. 660-668
Author(s):  
Junaidi Junaidi ◽  
Nourma Pramestie Wulandari ◽  
Deni Hamdani

The purpose of this research is to find mathematical concepts in the cultural heritage of songket cloth and how to apply them as a medium for learning mathematics in junior high schools. The results of this study can be used as a reference for junior high school teachers to choose culture-based learning media related to student life, especially in Lombok. This research is an ethnomathematical research with the research method used is a qualitative research method with an ethnographic approach. The research was conducted in September, October, and November 2021 in Sukarara village, Lombok, West Nusa Tenggara. The subjects in this study were craft works in the form of songket cloth and songket weavers who were active in the village of Sukarara which consisted of three weavers. Data were collected by documentation, document observation, and interviews. The documents obtained were then analyzed related to the content of the mathematical concepts contained therein. The conclusion of this study is that the quality of mathematics learning can be improved by using the traditional songket subahnale cloth as a medium or learning aid. Some mathematical concepts that can be learned with songket subahnale as the medium are congruence, similarity, perimeter of flat shapes, area of flat shapes, folding symmetry, comparisons, pattern tracing. Songket fabrics that can be used as media are songket subahnale woven fabrics with geometric motifs such as diamond motifs, rang-rang motifs, and hexagons


2021 ◽  
Vol 8 (1) ◽  
pp. 52-66
Author(s):  
Dessalegn Awgichew ◽  
Santhanam Sakthivel ◽  
Mekdes Gedlu ◽  
Meseret Bogale

Products produced from textile industries cannot meet the needs for human kind since the population of the world grows exponentially; due to this the recycling of textile materials has gained massive importance in textile and clothing sector. In this study, it was aimed to analyse recycled fibers effect on the yarn and hand loom fabrics as their proportion increases. For this purpose, OE rotor yarns produced by varying the recycled fibers proportion at 25%, 50, and 75% and compared with 100% virgin cotton yarns. The physical and mechanical properties of the yarns such as unevenness, imperfections, hairiness, breaking force, elongation, were measured by Uster Tester 4 SX, Uster Zweigle Hairiness Tester 5, and Uster Tensorapid 3. Then after hand loom fabrics with plain and twill fabrics are produced from produced yarns of different recycled fiber proportions. The effects of recycled fiber proportion on produced hand-woven fabric properties such as pilling, abrasion resistance and air permeability were also evaluated. Results showed that yarns and fabrics produced from recycled fibers blended with virgin cotton are suitable for applications where the strength of yarns and fabric are less critical, but where unevenness, imperfections and handle properties required thus, hand loom fabrics Produced can suitably used for home furnishing applications like table cover, curtains, wall covers and pillow cases.


Coatings ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 12
Author(s):  
Hyun-Ah Kim

This study examined the water repellency (WR), waterproof, and water vapor permeability (WVP) characteristics of twelve types of laminated and coated woven fabrics for outdoor clothing. These characteristics were compared with the fabric structural parameters, such as cover factor, thickness, and weight, and surface modification (finishing) factors, such as coating, laminating, and Teflon treatments. In addition, an eco-friendly process for surface modification was proposed followed by a summary. Superior waterproof-breathable characteristics with 100% water-repellency were achieved in specimen 3 in group A by treatment with a hydrophilic laminated finish using nylon woven fabric with a cover factor between 0.7 and 0.9 in a 2.5-layered fabric, which was the best specimen with waterproof-breathable characteristics. A high WVP in the coated and laminated fabrics was observed in the fabrics with a low weave density coefficient (WDC) and low thickness per unit weight of the fabric, whereas superior water repellency and waterproof characteristics were observed in the high-cover-factor (WDC) fabric with appropriate fabric thickness. The determination coefficient (R2) from regression analysis between the WVP and fabric structural parameters indicated a higher contribution of the fabric structural parameters than surface modification factors, such as coating and laminating to the WVP in the coated and laminated fabrics. Furthermore, the cover factor was the most important factor influencing the WVP of the waterproof-breathable fabrics. Of twelve coated and laminated fabrics, the laminated nylon and nylon/cotton composite fabrics showed superior WVP with high WR and waterproof characteristics. Accordingly, based on the WR, waterproof, and WVP characteristics of the coated and laminated breathable fabrics, the laminating method, as an eco-friendly process, is recommended to obtain better waterproof-breathable fabrics.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Malgorzata Matusiak

Abstract This work concerns the comfort-related properties of seersucker woven fabrics made of cotton. Seersucker woven fabrics are characterized by alternating puckered and flat strips in the warp direction. Some researchers consider that due to this structure seersucker fabrics are characterized by very good comfort-related properties. In this work seersucker fabrics with differing repeats of the seersucker effect and different weft yarns were investigated in intense heat and high moisture transfer. Results showed that the structural factors significantly influence the comfort-related properties of the investigated cotton fabrics.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 1
Author(s):  
Andrzej Ambroziak ◽  
Paweł Kłosowski

The impact of water-induced degradation on the mechanical properties of the chosen two PTFE-coated, glass threads woven fabrics is investigated in this paper. The paper begins with a survey of literature concerning the investigation and determination of coated woven fabric properties. The authors carried out the uniaxial tensile tests with an application of flat and curved grips to establish the proper values of the ultimate tensile strength and the longitudinal stiffness of groups of specimens treated with different moisture conditions. Despite the water resistance of the main materials used for fabrics manufacturing, the change of the mechanical properties caused by the influence of water immersion has been noticed. The reduction in the tensile strength resulting under waterlogged is observed in the range from 5% to 16% depending on the type of investigated coated woven fabric and direction of weft or warp.


Sign in / Sign up

Export Citation Format

Share Document