Faculty Opinions recommendation of Contact order dependent protein folding rates: kinetic consequences of a cooperative interplay between favorable nonlocal interactions and local conformational preferences.

Author(s):  
Eaton E Lattman
2014 ◽  
Vol 13 (01) ◽  
pp. 1450005 ◽  
Author(s):  
Amy S. Wagaman ◽  
Sheila S. Jaswal

Absolute contact order is one of the simplest parameters used to predict protein folding rates. Many variants of contact order (CO) have been applied to highlight different aspects of contact neighborhoods and their relationship to folding. However, a systematic study of the influence of CO variants on correlation with folding rate has not been performed for a large combined set of multi- and two-state proteins. We explore different contact neighborhoods and resulting CO by varying the distance thresholds and weighting of sequence separation for heavy atom and residue-based counting methods for a set of 136 proteins diverse across folding and structural classes. We examine the changes in contact neighborhoods and compare correlations with our CO variants and the protein folding rates across our data set as well as by folding type and structural class. Different CO variants lead to the strongest correlations within each protein structural class. Our results demonstrate that backbone topology at a distance beyond where energetic interactions dominate is able to capture folding determinants, and suggest that more sensitive methods of characterizing contact relationships may improve ln kf prediction for diverse protein sets.


2002 ◽  
Vol 117 (18) ◽  
pp. 8587-8591 ◽  
Author(s):  
P. F. N. Faisca ◽  
R. C. Ball

2005 ◽  
Vol 123 (15) ◽  
pp. 154906 ◽  
Author(s):  
Inês R. Silva ◽  
Lucila M. Dos Reis ◽  
A. Caliri

2020 ◽  
Vol 27 (4) ◽  
pp. 321-328 ◽  
Author(s):  
Yanru Li ◽  
Ying Zhang ◽  
Jun Lv

Background: Protein folding rate is mainly determined by the size of the conformational space to search, which in turn is dictated by factors such as size, structure and amino-acid sequence in a protein. It is important to integrate these factors effectively to form a more precisely description of conformation space. But there is no general paradigm to answer this question except some intuitions and empirical rules. Therefore, at the present stage, predictions of the folding rate can be improved through finding new factors, and some insights are given to the above question. Objective: Its purpose is to propose a new parameter that can describe the size of the conformational space to improve the prediction accuracy of protein folding rate. Method: Based on the optimal set of amino acids in a protein, an effective cumulative backbone torsion angles (CBTAeff) was proposed to describe the size of the conformational space. Linear regression model was used to predict protein folding rate with CBTAeff as a parameter. The degree of correlation was described by the coefficient of determination and the mean absolute error MAE between the predicted folding rates and experimental observations. Results: It achieved a high correlation (with the coefficient of determination of 0.70 and MAE of 1.88) between the logarithm of folding rates and the (CBTAeff)0.5 with experimental over 112 twoand multi-state folding proteins. Conclusion: The remarkable performance of our simplistic model demonstrates that CBTA based on optimal set was the major determinants of the conformation space of natural proteins.


2020 ◽  
Vol 27 (4) ◽  
pp. 303-312 ◽  
Author(s):  
Ruifang Li ◽  
Hong Li ◽  
Sarula Yang ◽  
Xue Feng

Background: It is currently believed that protein folding rates are influenced by protein structure, environment and temperature, amino acid sequence and so on. We have been working for long to determine whether and in what ways mRNA affects the protein folding rate. A large number of palindromes aroused our attention in our previous research. Whether these palindromes do have important influences on protein folding rates and what’s the mechanism? Very few related studies are focused on these problems. Objective: In this article, our motivation is to find out if palindromes have important influences on protein folding rates and what’s the mechanism. Method: In this article, the parameters of the palindromes were defined and calculated, the linear regression analysis between the values of each parameter and the experimental protein folding rates were done. Furthermore, to compare the results of different kinds of proteins, proteins were classified into the two-state proteins and the multi-state proteins. For the two kinds of proteins, the above linear regression analysis were performed respectively. Results : Protein folding rates were negatively correlated to the palindrome frequencies for all proteins. An extremely significant negative linear correlation appeared in the relationship between palindrome densities and protein folding rates. And the repeatedly used bases by different palindromes simultaneously have an important effect on the relationship between palindrome density and protein folding rate. Conclusion: The palindromes have important influences on protein folding rates, and the repeatedly used bases in different palindromes simultaneously play a key role in influencing the protein folding rates.


Sign in / Sign up

Export Citation Format

Share Document