topological complexity
Recently Published Documents


TOTAL DOCUMENTS

222
(FIVE YEARS 55)

H-INDEX

18
(FIVE YEARS 3)

2022 ◽  
Vol 183 (3-4) ◽  
pp. 243-291
Author(s):  
Olivier Finkel ◽  
Michał Skrzypczak

We prove that ω-languages of (non-deterministic) Petri nets and ω-languages of (nondeterministic) Turing machines have the same topological complexity: the Borel and Wadge hierarchies of the class of ω-languages of (non-deterministic) Petri nets are equal to the Borel and Wadge hierarchies of the class of ω-languages of (non-deterministic) Turing machines. We also show that it is highly undecidable to determine the topological complexity of a Petri net ω-language. Moreover, we infer from the proofs of the above results that the equivalence and the inclusion problems for ω-languages of Petri nets are ∏21-complete, hence also highly undecidable. Additionally, we show that the situation is quite the opposite when considering unambiguous Petri nets, which have the semantic property that at most one accepting run exists on every input. We provide a procedure of determinising them into deterministic Muller counter machines with counter copying. As a consequence, we entail that the ω-languages recognisable by unambiguous Petri nets are △30 sets.


2021 ◽  
pp. 1-18
Author(s):  
Natalia Cadavid-Aguilar ◽  
Jesús González ◽  
Bárbara Gutiérrez ◽  
Cesar A. Ipanaque-Zapata

We introduce the effectual topological complexity (ETC) of a [Formula: see text]-space [Formula: see text]. This is a [Formula: see text]-equivariant homotopy invariant sitting in between the effective topological complexity of the pair [Formula: see text] and the (regular) topological complexity of the orbit space [Formula: see text]. We study ETC for spheres and surfaces with antipodal involution, obtaining a full computation in the case of the torus. This allows us to prove the vanishing of twice the nontrivial obstruction responsible for the fact that the topological complexity of the Klein bottle is [Formula: see text]. In addition, this gives a counterexample to the possibility — suggested in Pavešić’s work on the topological complexity of a map — that ETC of [Formula: see text] would agree with Farber’s [Formula: see text] whenever the projection map [Formula: see text] is finitely sheeted. We conjecture that ETC of spheres with antipodal action recasts the Hopf invariant one problem, and describe (conjecturally optimal) effectual motion planners.


2021 ◽  
pp. 1-20
Author(s):  
J. M. García-Calcines

The notion of parametrized topological complexity, introduced by Cohen, Farber and Weinberger, is extended to fiberwise spaces which are not necessarily Hurewicz fibrations. After exploring some formal properties of this extension we also introduce the pointed version of parametrized topological complexity. Finally, we give sufficient conditions so that both notions agree.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Daniel C. Cohen ◽  
Lucile Vandembroucq

Abstract We find conditions which ensure that the topological complexity of a closed manifold M with abelian fundamental group is nonmaximal, and see through examples that our conditions are sharp. This generalizes results of Costa and Farber on the topological complexity of spaces with small fundamental group. Relaxing the commutativity condition on the fundamental group, we also generalize results of Dranishnikov on the Lusternik–Schnirelmann category of the cofibre of the diagonal map Δ : M → M × M {\Delta:M\to M\times M} for nonorientable surfaces by establishing the nonmaximality of this invariant for a large class of manifolds.


Mathematics ◽  
2021 ◽  
Vol 9 (19) ◽  
pp. 2358
Author(s):  
Carlos Ortiz ◽  
Adriana Lara ◽  
Jesús González ◽  
Ayse Borat

We describe and implement a randomized algorithm that inputs a polyhedron, thought of as the space of states of some automated guided vehicle R, and outputs an explicit system of piecewise linear motion planners for R. The algorithm is designed in such a way that the cardinality of the output is probabilistically close (with parameters chosen by the user) to the minimal possible cardinality.This yields the first automated solution for robust-to-noise robot motion planning in terms of simplicial complexity (SC) techniques, a discretization of Farber’s topological complexity TC. Besides its relevance toward technological applications, our work reveals that, unlike other discrete approaches to TC, the SC model can recast Farber’s invariant without having to introduce costly subdivisions. We develop and implement our algorithm by actually discretizing Macías-Virgós and Mosquera-Lois’ notion of homotopic distance, thus encompassing computer estimations of other sectional category invariants as well, such as the Lusternik-Schnirelmann category of polyhedra.


Sign in / Sign up

Export Citation Format

Share Document