Faculty Opinions recommendation of Adaptation to visuomotor transformations: consolidation, interference, and forgetting.

Author(s):  
Reza Shadmehr
Author(s):  
Kaleb A. Lowe ◽  
Wolf Zinke ◽  
M. Anthony Phipps ◽  
Josh Cosman ◽  
Micala Maddox ◽  
...  

2018 ◽  
Vol 120 (1) ◽  
pp. 239-249 ◽  
Author(s):  
James E. Gehringer ◽  
David J. Arpin ◽  
Elizabeth Heinrichs-Graham ◽  
Tony W. Wilson ◽  
Max J. Kurz

Although it is well appreciated that practicing a motor task updates the associated internal model, it is still unknown how the cortical oscillations linked with the motor action change with practice. The present study investigates the short-term changes (e.g., fast motor learning) in the α- and β-event-related desynchronizations (ERD) associated with the production of a motor action. To this end, we used magnetoencephalography to identify changes in the α- and β-ERD in healthy adults after participants practiced a novel isometric ankle plantarflexion target-matching task. After practicing, the participants matched the targets faster and had improved accuracy, faster force production, and a reduced amount of variability in the force output when trying to match the target. Parallel with the behavioral results, the strength of the β-ERD across the motor-planning and execution stages was reduced after practice in the sensorimotor and occipital cortexes. No pre/postpractice changes were found in the α-ERD during motor planning or execution. Together, these outcomes suggest that fast motor learning is associated with a decrease in β-ERD power. The decreased strength likely reflects a more refined motor plan, a reduction in neural resources needed to perform the task, and/or an enhancement of the processes that are involved in the visuomotor transformations that occur before the onset of the motor action. These results may augment the development of neurologically based practice strategies and/or lead to new practice strategies that increase motor learning. NEW & NOTEWORTHY We aimed to determine the effects of practice on the movement-related cortical oscillatory activity. Following practice, we found that the performance of the ankle plantarflexion target-matching task improved and the power of the β-oscillations decreased in the sensorimotor and occipital cortexes. These novel findings capture the β-oscillatory activity changes in the sensorimotor and occipital cortexes that are coupled with behavioral changes to demonstrate the effects of motor learning.


2008 ◽  
Vol 18 (10) ◽  
pp. 2358-2368 ◽  
Author(s):  
Alit Stark ◽  
Ehud Zohary

2006 ◽  
Vol 95 (6) ◽  
pp. 3712-3726 ◽  
Author(s):  
Frédéric V. Barthélemy ◽  
Ivo Vanzetta ◽  
Guillaume S. Masson

Visual neurons integrate information over a finite part of the visual field with high selectivity. This classical receptive field is modulated by peripheral inputs that play a role in both neuronal response normalization and contextual modulations. However, the consequences of these properties for visuomotor transformations are yet incompletely understood. To explore those, we recorded short-latency ocular following responses in humans to large center-only and center-surround stimuli. We found that eye movements are triggered by a mechanism that integrates motion over a restricted portion of the visual field, the size of which depends on stimulus contrast and increases as a function of time after response onset. We also found evidence for a strong nonisodirectional center-surround organization, responsible for normalizing the central, driving input so that motor responses are set to their most linear contrast dynamics. Such response normalization is delayed about 20 ms relative to tracking onset, gradually builds up over time, and is partly tuned for surround orientation/direction. These results outline the spatiotemporal organization of a behavioral receptive field, which might reflect a linear integration among subpopulations of cortical visual motion detectors.


2020 ◽  
Author(s):  
Samuele Contemori ◽  
Gerald E. Loeb ◽  
Brian D. Corneil ◽  
Guy Wallis ◽  
Timothy J. Carroll

ABSTRACTVolitional visuomotor responses in humans are generally thought to manifest 100ms or more after stimulus onset. Under appropriate conditions, however, much faster target-directed responses can be produced at upper limb and neck muscles. These “express” responses have been termed stimulus-locked responses (SLRs) and are proposed to be modulated by visuomotor transformations performed subcortically via the superior colliculus. Unfortunately, for those interested in studying SLRs, these responses have proven difficult to detect consistently across individuals. The recent report of an effective paradigm for generating SLRs in 100% of participants appears to change this. The task required the interception of a moving target that emerged from behind a barrier at a time consistent with the target velocity. Here we aimed to reproduce the efficacy of this paradigm for eliciting SLRs and to test the hypothesis that its effectiveness derives from the predictability of target onset time as opposed to target motion per se. In one experiment, we recorded surface EMG from shoulder muscles as participants made reaches to intercept temporally predictable or unpredictable targets. Consistent with our hypothesis, predictably timed targets produced more frequent and stronger SLRs than unpredictably timed targets. In a second experiment, we compared different temporally predictable stimuli and observed that transiently presented targets produced larger and earlier SLRs than sustained moving targets. Our results suggest that target motion is not critical for facilitating the expression of an SLR and that timing predictability does not rely on extrapolation of a physically plausible motion trajectory. These findings provide support for a mechanism whereby an internal timer, probably located in cerebral cortex, primes the processing of both visual input and motor output within the superior colliculus to produce SLRs.


PLoS ONE ◽  
2019 ◽  
Vol 14 (5) ◽  
pp. e0215518 ◽  
Author(s):  
Gerome A. Manson ◽  
Luc Tremblay ◽  
Nicolas Lebar ◽  
John de Grosbois ◽  
Laurence Mouchnino ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document