eye field
Recently Published Documents


TOTAL DOCUMENTS

665
(FIVE YEARS 74)

H-INDEX

87
(FIVE YEARS 4)

NeuroImage ◽  
2021 ◽  
pp. 118846
Author(s):  
Alexia Bourgeois ◽  
Virginie Sterpenich ◽  
Giannina Rita Iannotti ◽  
Patrik Vuilleumier

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Ian Krajbich ◽  
Andres Mitsumasu ◽  
Rafael Polania ◽  
Christian C Ruff ◽  
Ernst Fehr

Recent studies have suggested close functional links between overt visual attention and decision making. This suggests that the corresponding mechanisms may interface in brain regions known to be crucial for guiding visual attention – such as the frontal eye field (FEF). Here, we combined brain stimulation, eye tracking, and computational approaches to explore this possibility. We show that inhibitory transcranial magnetic stimulation (TMS) over the right FEF has a causal impact on decision making, reducing the effect of gaze dwell time on choice while also increasing reaction times. We computationally characterize this putative mechanism by using the attentional drift diffusion model (aDDM), which reveals that FEF inhibition reduces the relative discounting of the non-fixated option in the comparison process. Our findings establish an important causal role of the right FEF in choice, elucidate the underlying mechanism, and provide support for one of the key causal hypotheses associated with the aDDM.


2021 ◽  
pp. 108202
Author(s):  
Tzu-Yu Hsu ◽  
Jui-Tai Chen ◽  
Philip Tseng ◽  
Chin-An Wang
Keyword(s):  

2021 ◽  
Vol 118 (40) ◽  
pp. e2108922118
Author(s):  
Debaleena Basu ◽  
Naveen Sendhilnathan ◽  
Aditya Murthy

Sequences of saccadic eye movements are instrumental in navigating our visual environment. While neural activity has been shown to ramp up to a threshold before single saccades, the neural underpinnings of multiple saccades is unknown. To understand the neural control of saccade sequences, we recorded from the frontal eye field (FEF) of macaque monkeys while they performed a sequential saccade task. We show that the concurrent planning of two saccade plans brings forth processing bottlenecks, specifically by decreasing the growth rate and increasing the threshold of saccade-related ramping activity. The rate disruption affected both saccade plans, and a computational model, wherein activity related to the two saccade plans mutually and asymmetrically inhibited each other, predicted the behavioral and neural results observed experimentally. Borrowing from models in psychology, our results demonstrate a capacity-sharing mechanism of processing bottlenecks, wherein multiple saccade plans in a sequence compete for the processing capacity by the perturbation of the saccade-related ramping activity. Finally, we show that, in contrast to movement-related neurons, visual activity in FEF neurons is not affected by the presence of multiple saccade targets, indicating that, for perceptually simple tasks, inhibition within movement-related neurons mainly instantiates capacity sharing. Taken together, we show how psychology-inspired models of capacity sharing can be mapped onto neural responses to understand the control of rapid saccade sequences.


2021 ◽  
Author(s):  
Jing Jia ◽  
Zhen Puyang ◽  
Qingjun Wang ◽  
Xin Jin ◽  
Aihua Chen
Keyword(s):  

2021 ◽  
Vol 13 ◽  
Author(s):  
Charlotte Piette ◽  
Marie Vandecasteele ◽  
Clémentine Bosch-Bouju ◽  
Valérie Goubard ◽  
Vincent Paillé ◽  
...  

Although many details remain unknown, several positive statements can be made about the laminar distribution of primate frontal eye field (FEF) neurons with different physiological properties. Most certainly, pyramidal neurons in the deep layer of FEF that project to the brainstem carry movement and fixation signals but clear evidence also support that at least some deep-layer pyramidal neurons projecting to the superior colliculus carry visual responses. Thus, deep-layer neurons in FEF are functionally heterogeneous. Despite the useful functional distinctions between neuronal responses in vivo, the underlying existence of distinct cell types remain uncertain, mostly due to methodological limitations of extracellular recordings in awake behaving primates. To substantiate the functionally defined cell types encountered in the deep layer of FEF, we measured the biophysical properties of pyramidal neurons recorded intracellularly in brain slices issued from macaque monkey biopsies. Here, we found that biophysical properties recorded in vitro permit us to distinguish two main subtypes of regular-spiking neurons, with, respectively, low-resistance and low excitability vs. high-resistance and strong excitability. These results provide useful constraints for cognitive models of visual attention and saccade production by indicating that at least two distinct populations of deep-layer neurons exist.


Author(s):  
Jan Churan ◽  
Andre Kaminiarz ◽  
Jakob C. B. Schwenk ◽  
Frank Bremmer

AbstractThe oculomotor system can initiate remarkably accurate saccades towards moving targets (interceptive saccades) the processing of which is still under debate. The generation of these saccades requires the oculomotor centers to have information about the motion parameters of the target that then must be extrapolated to bridge the inherent processing delays. We investigated to what degree the information about motion of a saccade target is available in the lateral intra-parietal area (area LIP) of macaque monkeys for generation of accurate interceptive saccades. When a multi-layer neural network was trained based on neural discharges from area LIP around the time of saccades towards stationary targets, it was also able to predict the end points of saccades directed towards moving targets. This prediction, however, lagged behind the actual post-saccadic position of the moving target by ~ 80 ms when the whole neuronal sample of 105 neurons was used. We further found that single neurons differentially code for the motion of the target. Selecting neurons with the strongest representation of target motion reduced this lag to ~ 30 ms which represents the position of the moving target approximately at the onset of the interceptive saccade. We conclude that—similarly to recent findings from the Superior Colliculus (Goffart et al. J Neurophysiol 118(5):2890–2901)—there is a continuum of contributions of individual LIP neurons to the accuracy of interceptive saccades. A contribution of other gaze control centers (like the cerebellum or the frontal eye field) that further increase the saccadic accuracy is, however, likely.


Author(s):  
Satya Prakash Rungta ◽  
Debaleena Basu ◽  
Naveen Sendhilnathan ◽  
Aditya Murthy

A hallmark of intelligent behavior is that we can separate intention from action. To understand the mechanism that gates the flow of information between motor planning and execution, we compared the activity of frontal eye field neurons with motor unit activity from neck muscles in the presence of an intervening delay period in which spatial information regarding the target was available to plan a response. Whereas spatially-specific delay period activity was present in the activity of frontal eye field neurons, it was absent in motor unit activity. Nonetheless, motor unit activity was correlated with the time it took to initiate saccades. Interestingly, we observed a heterogeneity of responses amongst motor units, such that only units with smaller amplitudes showed a clear modulation during the delay period. These small amplitude motor units also had higher spontaneous activity compared to the units which showed modulation only during the movement epoch. Taken together, our results suggest the activity of smaller motor units convey temporal information and explains how the delay period primes muscle activity leading to faster reaction times.


2021 ◽  
Author(s):  
Jan Churan ◽  
Andre Kaminiarz ◽  
Jakob C.B. Schwenk ◽  
Frank Bremmer

The oculomotor system can initiate remarkably accurate saccades towards moving targets (interceptive saccades) the processing of which is still under debate. The generation of these saccades requires the oculomotor centers to have information about the motion parameters of the target that then must be extrapolated to bridge the inherent processing delays. We investigated to what degree the information about motion of a saccade target is available in the lateral intra-parietal area (area LIP) of macaque monkeys for generation of accurate interceptive saccades. When a multi-layer neural network was trained based on neural discharges from area LIP around the time of saccades towards stationary targets it was also able to predict the end points of saccades directed towards moving targets. This prediction, however, lagged behind the actual post-saccadic position of the moving target by ~80 ms when the whole neuronal sample of 105 neurons was used. We further found that single neurons differentially code for the motion of the target. Selecting neurons with the strongest representation of target motion reduced this lag to ~30 ms which represents the position of the moving target approximately at the onset of the interceptive saccade. We conclude that - similarly to recent findings from the Superior Colliculus (Goffart et al., 2017) - there is a continuum of contributions of individual LIP neurons to the accuracy of interceptive saccades. A contribution of other gaze control centers (like the cerebellum or the frontal eye field) that further increase the saccadic accuracy is, however, likely.


Sign in / Sign up

Export Citation Format

Share Document