Faculty Opinions recommendation of A nuclear-targeted cameleon demonstrates intranuclear Ca2+ spiking in Medicago truncatula root hairs in response to rhizobial nodulation factors.

Author(s):  
Martin Parniske
2009 ◽  
Vol 151 (3) ◽  
pp. 1197-1206 ◽  
Author(s):  
Björn J. Sieberer ◽  
Mireille Chabaud ◽  
Antonius C. Timmers ◽  
André Monin ◽  
Joëlle Fournier ◽  
...  

Author(s):  
L. Cárdenas ◽  
J. Feijó ◽  
J. G. Kunkel ◽  
L. Vidali ◽  
J. Domínguez ◽  
...  

2018 ◽  
Vol 31 (5) ◽  
pp. 568-575 ◽  
Author(s):  
Marta Robledo ◽  
Esther Menéndez ◽  
Jose Ignacio Jiménez-Zurdo ◽  
Raúl Rivas ◽  
Encarna Velázquez ◽  
...  

The infection of legume plants by rhizobia is tightly regulated to ensure accurate bacterial penetration, infection, and development of functionally efficient nitrogen-fixing root nodules. Rhizobial Nod factors (NF) have key roles in the elicitation of nodulation signaling. Infection of white clover roots also involves the tightly regulated specific breakdown of the noncrystalline apex of cell walls in growing root hairs, which is mediated by Rhizobium leguminosarum bv. trifolii cellulase CelC2. Here, we have analyzed the impact of this endoglucanase on symbiotic signaling in the model legume Medicago truncatula. Ensifer meliloti constitutively expressing celC gene exhibited delayed nodulation and elicited aberrant ineffective nodules, hampering plant growth in the absence of nitrogen. Cotreatment of roots with NF and CelC2 altered Ca2+ spiking in root hairs and induction of the early nodulin gene ENOD11. Our data suggest that CelC2 alters early signaling between partners in the rhizobia-legume interaction.


2019 ◽  
Vol 98 (3) ◽  
pp. 418-433 ◽  
Author(s):  
Limin Wang ◽  
Man‐Yuan Guo ◽  
Jean‐Baptiste Thibaud ◽  
Anne‐Aliénor Véry ◽  
Hervé Sentenac

2015 ◽  
Vol 27 (3) ◽  
pp. 806-822 ◽  
Author(s):  
Ming-Juan Lei ◽  
Qi Wang ◽  
Xiaolin Li ◽  
Aimin Chen ◽  
Li Luo ◽  
...  

2008 ◽  
Vol 148 (4) ◽  
pp. 1985-1995 ◽  
Author(s):  
Joëlle Fournier ◽  
Antonius C.J. Timmers ◽  
Björn J. Sieberer ◽  
Alain Jauneau ◽  
Mireille Chabaud ◽  
...  

2021 ◽  
Author(s):  
Christopher J. Hawxhurst ◽  
Jamie L Micciulla ◽  
Charles M Bridges ◽  
Leslie M Shor ◽  
Daniel J. Gage

The rhizosphere is the region of soil directly influenced by plant roots. The microbial community in the rhizosphere includes fungi, protists, and bacteria, all of which play a significant role in plant health. The beneficial bacterium Sinorhizobium meliloti infects growing root hairs on nitrogen starved leguminous plants. Infection leads to the formation of a root nodule, where S. meliloti converts atmospheric nitrogen to ammonia, the usable form of nitrogen for plants. However, S. meliloti, often found in biofilms, travels slowly; whereas infectible root hairs are found at the growing root tip, potentially causing many root hairs to remain uninfected by S. meliloti when it is delivered as a seed inoculant. Soil protists are an important component of the rhizosphere system who prey on soil bacteria and have been known to egest undigested phagosomes. We show that the soil protist, Colpoda sp., plays an important role in transporting S. meliloti down Medicago truncatula roots. By using pseudo-3D soil microcosms we directly observed the presence of fluorescently labelled S. meliloti along M. truncatula roots and track the displacement of bacteria over time. In the presence of Colpoda sp., S. meliloti was detected 44 mm, on average, farther down the roots, compared with the Bacteria Only Treatment. Facilitating bacterial transport may be an important mechanism whereby soil protists promote plant health. Protist facilitated transport as a sustainable agriculture biotechnology has the potential to boost efficacy of bacterial inoculants, avoid overuse of nitrogen fertilizers, and enhance performance of no-till farming practices.


2007 ◽  
Vol 20 (2) ◽  
pp. 129-137 ◽  
Author(s):  
Jeroen Den Herder ◽  
Celine Vanhee ◽  
Riet De Rycke ◽  
Viviana Corich ◽  
Marcelle Holsters ◽  
...  

Bacterial nodulation factors (NFs) are essential signaling molecules for the initiation of a nitrogen-fixing symbiosis in legumes. NFs are perceived by the plant and trigger both local and distant responses, such as curling of root hairs and cortical cell divisions. In addition to their requirement at the start, NFs are produced by bacteria that reside within infection threads. To analyze the role of NFs at later infection stages, several phases of nodulation were studied by detailed light and electron microscopy after coinoculation of adventitious root primordia of Sesbania rostrata with a mixture of Azorhizobium caulinodans mutants ORS571-V44 and ORS571-X15. These mutants are deficient in NF production or surface polysaccharide synthesis, respectively, but they can complement each other, resulting in functional nodules occupied by ORS571-V44. The lack of NFs within the infection threads was confirmed by the absence of expression of an early NF-induced marker, leghemoglobin 6 of S. rostrata. NF production within the infection threads is shown to be necessary for proper infection thread growth and for synchronization of nodule formation with bacterial invasion. However, local production of NFs by bacteria that are taken up by the plant cells at the stage of bacteroid formation is not required for correct symbiosome development.


Sign in / Sign up

Export Citation Format

Share Document