nod factors
Recently Published Documents


TOTAL DOCUMENTS

214
(FIVE YEARS 17)

H-INDEX

44
(FIVE YEARS 1)

2021 ◽  
Vol 22 (23) ◽  
pp. 12991
Author(s):  
Katarzyna Susniak ◽  
Mikolaj Krysa ◽  
Dominika Kidaj ◽  
Monika Szymanska-Chargot ◽  
Iwona Komaniecka ◽  
...  

Multimodal spectroscopic imaging methods such as Matrix Assisted Laser Desorption/Ionization Mass Spectrometry Imaging (MALDI MSI), Fourier Transform Infrared spectroscopy (FT-IR) and Raman spectroscopy were used to monitor the changes in distribution and to determine semi quantitatively selected metabolites involved in nitrogen fixation in pea root nodules. These approaches were used to evaluate the effectiveness of nitrogen fixation by pea plants treated with biofertilizer preparations containing Nod factors. To assess the effectiveness of biofertilizer, the fresh and dry masses of plants were determined. The biofertilizer was shown to be effective in enhancing the growth of the pea plants. In case of metabolic changes, the biofertilizer caused a change in the apparent distribution of the leghaemoglobin from the edges of the nodule to its centre (the active zone of nodule). Moreover, the enhanced nitrogen fixation and presumably the accelerated maturation form of the nodules were observed with the use of a biofertilizer.


2021 ◽  
Author(s):  
Thi-Bich Luu ◽  
Anna Ourth ◽  
Cecile Pouzet ◽  
Nicolas Pauly ◽  
Julie Cullimore

Rhizobial lipochitooligosaccharidic Nod factors, specified by nod genes, are the primary determinants of host specificity in the legume-Rhizobia symbiosis. A Sinorhizobium meliloti nodF/nodL mutant produces Nod factors that differ from wild-type ones in lacking an O-acetate, and with a different acyl chain on the terminal non-reducing sugar. This mutant is defective in nodulation with various Medicago hosts. We examined the nodulation ability of M. truncatula cv Jemalong A17 and M. truncatula ssp. tricycla R108 with the nodF/nodL mutant. We then applied genetic and functional approaches to study the genetic basis and mechanism of nodulation of R108 by this mutant. We show that the nodF/nodL mutant can nodulate R108 but not A17. Using genomics and reverse genetics, we identified a newly-evolved gene in R108, LYK2bis, which is responsible for the phenotype. Transformation with LYK2bis allows A17 to gain nodulation with the nodF/nodL mutant. We found that LYK2bis is involved in specific NF signalling and interacts with the key receptor protein NFP. Our findings reveal that a newly-evolved gene in R108, LYK2bis, extends nodulation specificity to strains producing non-O-acetylated NFs. Interaction between LYK2bis and NFP provides a means of integrating the nodulation signalling pathways.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1457
Author(s):  
Karolina Smytkiewicz ◽  
Janusz Podleśny ◽  
Jerzy Wielbo ◽  
Anna Podleśna

The aim of the study was to determine the possibility of increasing the pea yields by improving the symbiotic nitrogen fixation through the use of a preparation containing bacterial Nod factors (NFs). Two pea cultivars were included in the experiment: Wiato (with traditional foliage) and Model (afila type). Before sowing, the seeds were soaked in distilled water (control) and in a preparation of Nod factors at a concentration of 10−12 M dm−3 H2O. As a result, of the Nod factor preparation use, an acceleration of the date and uniformity of pea plant emergence was observed. The treatment had also a positive effect on the number and weight of root nodules, which resulted in a significant increase in the yield of vegetative and generative plant organs. A positive effect of seed soaking with NFs preparation was also observed in the dynamics of pea weight increase, chlorophyll content in leaves and the values of gas exchange parameters. Model cultivar of pea had generally higher values of the analysed traits than Wiato, but the response of both cultivars to Nod factors was similar. This means that application of the preparation containing NFs, may improve the growth, development, and yield of both types of pea.


2021 ◽  
Vol 22 (12) ◽  
pp. 6233
Author(s):  
Sebastián Acosta-Jurado ◽  
Francisco Fuentes-Romero ◽  
Jose-Enrique Ruiz-Sainz ◽  
Monika Janczarek ◽  
José-María Vinardell

Rhizobia are soil proteobacteria able to engage in a nitrogen-fixing symbiotic interaction with legumes that involves the rhizobial infection of roots and the bacterial invasion of new organs formed by the plant in response to the presence of appropriate bacterial partners. This interaction relies on a complex molecular dialogue between both symbionts. Bacterial N-acetyl-glucosamine oligomers called Nod factors are indispensable in most cases for early steps of the symbiotic interaction. In addition, different rhizobial surface polysaccharides, such as exopolysaccharides (EPS), may also be symbiotically relevant. EPS are acidic polysaccharides located out of the cell with little or no cell association that carry out important roles both in free-life and in symbiosis. EPS production is very complexly modulated and, frequently, co-regulated with Nod factors, but the type of co-regulation varies depending on the rhizobial strain. Many studies point out a signalling role for EPS-derived oligosaccharides in root infection and nodule invasion but, in certain symbiotic couples, EPS can be dispensable for a successful interaction. In summary, the complex regulation of the production of rhizobial EPS varies in different rhizobia, and the relevance of this polysaccharide in symbiosis with legumes depends on the specific interacting couple.


Author(s):  
Sebastián Acosta-Jurado ◽  
Francisco Fuentes-Romero ◽  
Jose-Enrique Ruiz-Sainz ◽  
Monika Janczarek ◽  
José-María Vinardell

Abstract: Rhizobia are soil proteobacteria able to engage in a nitrogen-fixing symbiotic interaction with legumes which involves root rhizobial infection and bacterial invasion of new organs formed by the plant in response to the presence of appropriate bacterial partners. This interaction relies on a complex molecular dialogue between both symbionts. Bacterial N-acetyl-glucosamine oligomers called Nod factors are indispensable in most cases for early steps of the symbiotic interaction. In addition, different rhizobial surface polysaccharides, such as exopolysaccharides (EPS), may also be symbiotically relevant. EPS are acidic polysaccharides located out of the cell with little or no cell association that carry out important roles both in free-life and in symbiosis. EPS production is very complexly modulated and, frequently, co-regulated with that of Nod factors, but the type of co-regulation varies depending on the rhizobial strain. Many studies point out a signalling role of EPS-derived oligosaccharides in root infection and nodule invasion but, in certain symbiotic couples, EPS can be dispensable for a successful interaction. In summary, the complex regulation of the production of rhizobial EPS varies in different rhizobia and the relevance of this polysaccharide in symbiosis with legumes depends on the specific interacting couple.


Author(s):  
Sonali Roy ◽  
Andrew Breakspear ◽  
Donna Cousins ◽  
Ivone Torres-Jerez ◽  
Kirsty Jean Jackson ◽  
...  

Several ATP-Binding Cassette (ABC) transporters involved in the arbuscular mycorrhizal symbiosis and nodulation have been identified. We describe three previously-unreported ABC subfamily-B transporters, named ABCB for Mycorrhization and Nodulation (AMN1, AMN2, and AMN3), that are expressed early during infection by rhizobia and arbuscular mycorrhizal fungi. These ABCB transporters are strongly expressed in symbiotically infected tissues, including in root hair cells with rhizobial infection threads and arbusculated cells. During nodulation, the expression of these genes is highly induced by rhizobia and purified Nod factors, and was dependent on DMI3, but is not dependent on other known major regulators of infection such as NIN, NSP1, or NSP2. During mycorrhization their expression is dependent on DMI3 and RAM1, but not on NSP1 and NSP2. Therefore, they may be commonly regulated through a distinct branch of the common symbiotic pathway. Mutants with exonic Tnt1-transposon insertions were isolated for all three genes. None of the single or double mutants showed any differences in colonization by either rhizobia or mycorrhizal fungi, but the triple amn1 amn2 amn3 mutant showed an increase in nodule number. Further studies are needed to identify potential substrates of these transporters and understand their roles in these beneficial symbioses.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Johan Quilbé ◽  
Léo Lamy ◽  
Laurent Brottier ◽  
Philippe Leleux ◽  
Joël Fardoux ◽  
...  

AbstractAmong legumes (Fabaceae) capable of nitrogen-fixing nodulation, several Aeschynomene spp. use a unique symbiotic process that is independent of Nod factors and infection threads. They are also distinctive in developing root and stem nodules with photosynthetic bradyrhizobia. Despite the significance of these symbiotic features, their understanding remains limited. To overcome such limitations, we conduct genetic studies of nodulation in Aeschynomene evenia, supported by the development of a genome sequence for A. evenia and transcriptomic resources for 10 additional Aeschynomene spp. Comparative analysis of symbiotic genes substantiates singular mechanisms in the early and late nodulation steps. A forward genetic screen also shows that AeCRK, coding a receptor-like kinase, and the symbiotic signaling genes AePOLLUX, AeCCamK, AeCYCLOPS, AeNSP2, and AeNIN are required to trigger both root and stem nodulation. This work demonstrates the utility of the A. evenia model and provides a cornerstone to unravel mechanisms underlying the rhizobium–legume symbiosis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Safirah Tasa Nerves Ratu ◽  
Albin Teulet ◽  
Hiroki Miwa ◽  
Sachiko Masuda ◽  
Hien P. Nguyen ◽  
...  

AbstractLegume plants form a root-nodule symbiosis with rhizobia. This symbiosis establishment generally relies on rhizobium-produced Nod factors (NFs) and their perception by leguminous receptors (NFRs) that trigger nodulation. However, certain rhizobia hijack leguminous nodulation signalling via their type III secretion system, which functions in pathogenic bacteria to deliver effector proteins into host cells. Here, we report that rhizobia use pathogenic-like effectors to hijack legume nodulation signalling. The rhizobial effector Bel2-5 resembles the XopD effector of the plant pathogen Xanthomonas campestris and could induce nitrogen-fixing nodules on soybean nfr mutant. The soybean root transcriptome revealed that Bel2-5 induces expression of cytokinin-related genes, which are important for nodule organogenesis and represses ethylene- and defense-related genes that are deleterious to nodulation. Remarkably, Bel2-5 introduction into a strain unable to nodulate soybean mutant affected in NF perception conferred nodulation ability. Our findings show that rhizobia employ and have customized pathogenic effectors to promote leguminous nodulation signalling.


Sign in / Sign up

Export Citation Format

Share Document