soil microcosms
Recently Published Documents


TOTAL DOCUMENTS

315
(FIVE YEARS 48)

H-INDEX

48
(FIVE YEARS 4)

2022 ◽  
Vol 12 (1) ◽  
pp. 466
Author(s):  
Lucrezia Pardi-Comensoli ◽  
Mauro Tonolla ◽  
Andrea Colpo ◽  
Zuzanna Palczewska ◽  
Sharanya Revikrishnan ◽  
...  

The objective of this project is evaluating the potential of microbes (fungi and bacteria) for the depolymerization of epoxy, aiming at the development of a circular management of natural resources for epoxy in a long-term prospective. For depolymerization, epoxy samples were incubated for 1, 3, 6 and 9 months in soil microcosms inoculated with Ganoderma adspersum. Contact angle data revealed a reduction in the hydrophobicity induced by the fungus. Environmental scanning electron microscopy on epoxy samples incubated for more than 3 years in microbiological water revealed abundant microbiota. This comprised microbes of different sizes and shapes. The fungi Trichoderma harzianum and Aspergillus calidoustus, as well as the bacteria Variovorax sp. and Methyloversatilis discipulorum, were isolated from this environment. Altogether, these results suggest that microbes are able to colonize epoxy surfaces and, most probably, also partially depolymerize them. This could open promising opportunities for the study of new metabolisms potentially able depolymerize epoxy materials.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2595
Author(s):  
Gastón A. Iocoli ◽  
Luciano Orden ◽  
Fernando M. López ◽  
Marisa A. Gómez ◽  
María B. Villamil ◽  
...  

Mineralization studies are the first step in determining the usefulness of an amendment such as fertilizer, and are essential to creating guidelines for dairy waste management to help producers make informed decisions. Our goal was to assess the effects of dairy raw, composted, and digested manure amendments on C, N, and P mineralization to evaluate the feasibility of their in-farm production and use as organic fertilizers. The liquid and solid fractions of dairy effluent (LDE, SDE), dairy effluent digestate (DED), onion–cattle manure digestate and compost (OCMD, OCMC) were characterized by chemical and spectroscopic methods. Soil microcosms with LDE, SDE, DED, OCMD and OCMC and the C, N and P mineralization were determined periodically. Elemental and structural differences among amendments led to contrasting profiles of C, N, and P mineralization, and thus to differences in nutrient availability, immobilization, and CO2 emission. All processed materials were more stable than untreated waste, reducing C emissions. Digestates showed net C immobilization, and supplied the highest levels of available N, creating a relative P deficit. Instead, the compost supplied N and P via mineralization, producing a relative P excess. Future studies should aim at evaluating fertilization strategies that combine both kinds of amendments, to exploit their complimentary agronomic characteristics.


2021 ◽  
Author(s):  
Dalel Daâssi ◽  
Fatimah Qabil Almaghribi

Abstract The aim of this work was to isolate indigenous PAH degrading-fungi from petroleum contaminated soil and exogenous ligninolytic strains from decaying-wood, with the ability to secrete diverse enzyme activity. A total of ten ligninolytic fungal isolates and two native strains, has been successfully isolated, screened and identified. The phylogenetic analysis revealed that the indigenous fungi (KBR1 and KB8) belong to the genus Aspergillus niger and tubingensis. While the ligninolytic exogenous PAH-degrading strains namely KBR1-1, KB4, KB2 and LB3 were affiliated to different genera like Syncephalastrum sp, Paecilomyces formosus, Fusarium chlamydosporum, and Coniochaeta sp., respectively. Basis on the taxonomic analysis, enzymatic activities and the hydrocarbons removal rates, single fungal culture employing the strain LB3, KB4, KBR1 and the mixed culture (LB3+KB4) were selected to be used in soil microcosms treatments. The Total petroleum hydrocarbons (TPH), fungal growth rates, BOD5/COD ratios and GC-MS analysis, were determined in all soil microcosmos treatments (SMT) and compared with those of the control (SMU). After 60 days of culture incubation, the highest rate of TPH degradation was recorded in SMT[KB4] by approximately 92±2.35% followed by SMT[KBR1] then SMT[LB3+KB4] with 86.66±1.83% and 85.14±2.21%, respectively.


Fuel ◽  
2021 ◽  
pp. 122572
Author(s):  
Ziang Li ◽  
Hubert Cabana ◽  
Joanna Lecka ◽  
Diana Nkuku ◽  
Abiram Karanam Rathankumar ◽  
...  
Keyword(s):  

2021 ◽  
Vol 11 (18) ◽  
pp. 8567
Author(s):  
Ramdas Kanissery ◽  
Wenwen Liu ◽  
Ruby Tiwari ◽  
Gerald Sims

The impact of the aeration status of soils on the environmental fate of the soil-applied pre-emergent herbicide metolachlor is of significance to sustainable agriculture practices and has not been investigated thoroughly by existing research works. To address this knowledge gap, we examined the adsorption, desorption, degradation, and mineralization of radioactively labeled [14C] metolachlor in Catlin, Flanagan, and Drummer soils under aerobic and anaerobic conditions. Based on our findings, anaerobic conditions in the soil significantly reduced the adsorption of 14C-metolachlor while also promoting its desorption, thereby potentially releasing a greater amount of herbicide from the soil after a field application. The first-order degradation and mineralization kinetics of 14C-metolachlor were distinctively enhanced by anaerobic conditions in all the soils tested. Furthermore, the degradation and mineralization rates of 14C-metolachlor in non-sterilized versus sterilized soil microcosms clearly indicated microbial activity in the degradation of metolachlor in soil. The results from this study suggest that soil redox conditions could impact the bioavailability and environmental fate of herbicide metolachlor and should be taken into consideration as part of sustainable weed management programs.


Author(s):  
Line Lomheim ◽  
Robert Flick ◽  
Suly Rambinaising ◽  
Sarra Gaspard ◽  
Elizabeth A. Edwards

2021 ◽  
Vol 12 ◽  
Author(s):  
Yuzhu Dong ◽  
Shanghua Wu ◽  
Ye Deng ◽  
Shijie Wang ◽  
Haonan Fan ◽  
...  

Elucidating the relative importance of species interactions and assembly mechanisms in regulating bacterial community structure and functions, especially the abundant and rare subcommunities, is crucial for understanding the influence of environmental disturbance in shaping ecological functions. However, little is known about how polycyclic aromatic hydrocarbon (PAH) stress alters the stability and functions of the abundant and rare taxa. Here, we performed soil microcosms with gradient pyrene stresses as a model ecosystem to explore the roles of community assembly in determining structures and functions of the abundant and rare subcommunities. The dose–effect of pyrene significantly altered compositions of abundant and rare subcommunities. With increasing pyrene stresses, diversity increased in abundant subcommunities, while it decreased in the rare. Importantly, the abundant taxa exhibited a much broader niche width and environmental adaptivity than the rare, contributing more to pyrene biodegradation, whereas rare taxa played a key role in improving subcommunity resistance to stress, potentially promoting community persistence and stability. Furthermore, subcommunity co-occurrence network analysis revealed that abundant taxa inclined to occupy the core and central position in adaptation to the pyrene stresses. Stochastic processes played key roles in the abundant subcommunity rather than the rare subcommunity. Overall, these findings extend our understanding of the ecological mechanisms and interactions of abundant and rare taxa in response to pollution stress, laying a leading theoretical basis that abundant taxa are core targets for biostimulation in soil remediation.


Sign in / Sign up

Export Citation Format

Share Document