Faculty Opinions recommendation of Effects of morphologic left ventricular pressure on right ventricular geometry and tricuspid valve regurgitation in patients with congenitally corrected transposition of the great arteries.

Author(s):  
Laura Dos
2020 ◽  
Vol 4 (1) ◽  
Author(s):  
Bernard Obongonyinge ◽  
Judith Namuyonga ◽  
Hilda Tumwebaze ◽  
Twalib Aliku ◽  
Peter Lwabi ◽  
...  

Abstract Background Congenitally corrected transposition of great arteries (ccTGA) is rare. It is commonly associated with ventricular septal defect (VSD), pulmonary stenosis and heart block. Early anatomic repair is recommended between 3 and 6 months of age to prevent development of tricuspid valve regurgitation and systemic right ventricular failure. Case presentation We retrospectively identified five cases of ccTGA. Cases were between one and 13 years of age. All the cases were unoperated. Four of the five cases had associated intracardiac defects/complications. These included: VSD, pulmonary stenosis, tricuspid valve regurgitation, right ventricular systolic dysfunction and heart block. Conclusion These cases demonstrate the challenges of access to early diagnosis and surgery in a low resource setting. This delay in anatomic repair leads to complications of tricuspid valve regurgitation and systemic right ventricular failure.


2005 ◽  
Vol 15 (4) ◽  
pp. 396-401 ◽  
Author(s):  
Thomas S. Mir ◽  
Jan Falkenberg ◽  
Bernd Friedrich ◽  
Urda Gottschalk ◽  
Throng Phi Lê ◽  
...  

Objective:To evaluate the role of the concentration of brain natriuretic peptide in the plasma, and its correlation with haemodynamic right ventricular parameters, in children with overload of the right ventricle due to congenital cardiac disease.Methods:We studied 31 children, with a mean age of 4.8 years, with volume or pressure overload of the right ventricle caused by congenital cardiac disease. Of the patients, 19 had undergone surgical biventricular correction of tetralogy of Fallot, 11 with pulmonary stenosis and 8 with pulmonary atresia, and 12 patients were studied prior to operations, 7 with atrial septal defects and 5 with anomalous pulmonary venous connections. We measured brain natriuretic peptide using Triage®, from Biosite, United States of America. We determined end-diastolic pressures of the right ventricle, and the peak ratio of right to left ventricular pressures, by cardiac catheterization and correlated them with concentrations of brain natriuretic peptide in the plasma.Results:The mean concentrations of brain natriuretic peptide were 87.7, with a range from 5 to 316, picograms per millilitre. Mean end-diastolic pressure in the right ventricle was 5.6, with a range from 2 to 10, millimetres of mercury, and the mean ratio of right to left ventricular pressure was 0.56, with a range from 0.24 to 1.03. There was a positive correlation between the concentrations of brain natriuretic peptide and the ratio of right to left ventricular pressure (r equal to 0.7844, p less than 0.0001) in all patients. These positive correlations remained when the children with tetralogy of Fallot, and those with atrial septal defects or anomalous pulmonary venous connection, were analysed as separate groups. We also found a weak correlation was shown between end-diastolic right ventricular pressure and concentrations of brain natriuretic peptide in the plasma (r equal to 0.5947, p equal to 0.0004).Conclusion:There is a significant correlation between right ventricular haemodynamic parameters and concentrations of brain natriuretic peptide in the plasma of children with right ventricular overload due to different types of congenital cardiac disease. The monitoring of brain natriuretic peptide may provide a non-invasive and safe quantitative follow up of the right ventricular pressure and volume overload in these patients.


2000 ◽  
Vol 92 (6) ◽  
pp. 1777-1788 ◽  
Author(s):  
Daniel C. Sigg ◽  
Paul A. Iaizzo

Background Succinylcholine causes immediate and severe arterial hypotension in swine with the malignant hyperthermia phenotype. The underlying mechanisms are unknown. Methods Malignant hyperthermia-susceptible (MHS; n = 10) and normal swine (n = 5) were anesthetized with thiopental. The following were monitored: electrocardiogram; arterial blood pressure; pulmonary artery, central venous, and left and right ventricular pressure; cardiac output; end-tidal carbon dioxide; core temperature; peripheral-blood flows; and arterial blood gases. After a control period, 2 mg/kg succinylcholine was given intravenously. Three MHS animals received 1 mg/kg vecuronium and two MHS animals received 2.5 mg/kg dantrolene intravenously. The effects of succinylcholine on left and right ventricular pressure and contractility were analyzed in isolated hearts. The effects of 0.06 mm succinylcholine on isometric tension development were recorded in isolated femoral artery rings. Results Succinylcholine caused an early, severe decrease in blood pressure, cardiac output, left ventricular pressure, and left ventricular contractility in MHS swine but not in normal swine; no significant differences were found in heart rate, right ventricular parameters, systemic vascular resistance, and preload (pulmonary diastolic pressure, central venous pressure). The succinylcholine-induced hypotension and associated effects were not prevented by dantrolene. However, pretreatment with high-dose vecuronium prevented not only the cardiovascular depression, but also MH. In addition, no phenotypic differences of succinylcholine on contractility or left ventricular pressure were observed in the isolated working hearts. Similary, succinylcholine did not cause a significantly different relaxation in rings in either phenotype. Conclusion Succinylcholine-induced hypotension occurred before muscle hypermetabolism in MHS swine. Succinylcholine had no differential physiologic effects on either the isolated heart or on isolated arteries. This hypotension could not be prevented by dantrolene but was prevented by pretreatment with high-dose vecuronium. Thus, an indirect mechanism such as the release of a cardiac depressant from skeletal muscle may have caused this hypotensive response.


Sign in / Sign up

Export Citation Format

Share Document