Faculty Opinions recommendation of The new small-molecule mixed-lineage kinase 3 inhibitor URMC-099 is neuroprotective and anti-inflammatory in models of human immunodeficiency virus-associated neurocognitive disorders.

Author(s):  
Anirban Basu ◽  
Deepak Kaushik
Virology ◽  
2005 ◽  
Vol 338 (1) ◽  
pp. 182-199 ◽  
Author(s):  
Andre J. Marozsan ◽  
Shawn E. Kuhmann ◽  
Thomas Morgan ◽  
Carolina Herrera ◽  
Enid Rivera-Troche ◽  
...  

2010 ◽  
Vol 84 (11) ◽  
pp. 5842-5845 ◽  
Author(s):  
Rebecca Nedellec ◽  
Mia Coetzer ◽  
Michael M. Lederman ◽  
Robin E. Offord ◽  
Oliver Hartley ◽  
...  

ABSTRACT Resistance of human immunodeficiency virus type 1 (HIV-1) to small-molecule CCR5 inhibitors is well demonstrated, but resistance to macromolecular CCR5 inhibitors (e.g., PSC-RANTES) that act by both CCR5 internalization and receptor blockade had not been reported until recently (3). The report of a single simian-human immunodeficiency virus SHIVSF162-p3 variant with one V3 and one gp41 sequence change in gp160 that conferred both altered replicative fitness and resistance to PSC-RANTES was therefore surprising. We introduced the same two mutations into both the parental HIV-1SF162 and the macaque-adapted SHIVSF162-p3 and found minor differences in entry fitness but no changes in sensitivity to inhibition by either PSC-RANTES or the small-molecule allosteric inhibitor TAK-779. We attribute the earlier finding to confounding fitness effects with inhibitor sensitivity.


2007 ◽  
Vol 13 (1) ◽  
pp. 23-28 ◽  
Author(s):  
Mariana Cherner ◽  
Lucette Cysique ◽  
Robert K Heaton ◽  
Thomas D Marcotte ◽  
Ronald J Ellis ◽  
...  

2004 ◽  
Vol 48 (11) ◽  
pp. 4349-4359 ◽  
Author(s):  
Shibo Jiang ◽  
Hong Lu ◽  
Shuwen Liu ◽  
Qian Zhao ◽  
Yuxian He ◽  
...  

ABSTRACT A recently approved peptidic human immunodeficiency virus type 1 (HIV-1) fusion inhibitor, T-20 (Fuzeon; Trimeris Inc.), has shown significant promise in clinical application for treating HIV-1-infected individuals who have failed to respond to the currently available antiretroviral drugs. However, T-20 must be injected twice daily and is too expensive. Therefore, it is essential to develop orally available small molecule HIV-1 fusion inhibitors. By screening a chemical library consisting of “drug-like” compounds, we identified two N-substituted pyrroles, designated NB-2 and NB-64, that inhibited HIV-1 replication at a low micromolar range. The absence of the COOH group in NB-2 and NB-64 resulted in a loss of anti-HIV-1 activity, suggesting that this acid group plays an important role in mediating the antiviral activity. NB-2 and NB-64 inhibited HIV-1 fusion and entry by interfering with the gp41 six-helix bundle formation and disrupting the α-helical conformation. They blocked a d-peptide binding to the hydrophobic pocket on surface of the gp41 internal trimeric coiled-coil domain. Computer-aided molecular docking analysis has shown that they fit inside the hydrophobic pocket and that their COOH group interacts with a positively charged residue (K574) around the pocket to form a salt bridge. These results suggest that NB-2 and NB-64 may bind to the gp41 hydrophobic pocket through hydrophobic and ionic interactions and block the formation of the fusion-active gp41 core, thereby inhibiting HIV-1-mediated membrane fusion and virus entry. Therefore, NB-2 and NB-64 can be used as lead compounds toward designing and developing more potent small molecule HIV-1 fusion inhibitors targeting gp41.


2006 ◽  
Vol 51 (2) ◽  
pp. 707-715 ◽  
Author(s):  
Masanori Baba ◽  
Hiroshi Miyake ◽  
Xin Wang ◽  
Mika Okamoto ◽  
Katsunori Takashima

ABSTRACT TAK-652, a novel small-molecule chemokine receptor antagonist, is a highly potent and selective inhibitor of CCR5-using (R5) human immunodeficiency virus type 1 (HIV-1) replication in vitro. Since TAK-652 is orally bioavailable and has favorable pharmacokinetic profiles in humans, it is considered a promising candidate for an entry inhibitor of HIV-1. To investigate the resistance to TAK-652, peripheral blood mononuclear cells were infected with the R5 HIV-1 primary isolate KK and passaged in the presence of escalating concentrations of the compound for more than 1 year. After 67 weeks of cultivation, the escape virus emerged even in the presence of a high concentration of TAK-652. This virus displayed more than 200,000-fold resistance to TAK-652 compared with the wild type. The escape virus appeared to have cross-resistance to the structurally related compound TAK-779 but retained full susceptibility to TAK-220, which is from a different class of CCR5 antagonists. Furthermore, the escape virus was unable to use CXCR4 as a coreceptor. Analysis for Env amino acid sequences of escape viruses at certain points of passage revealed that amino acid changes accumulated with an increasing number of passages. Several amino acid changes not only in the V3 region but also in other Env regions seemed to be required for R5 HIV-1 to acquire complete resistance to TAK-652.


Sign in / Sign up

Export Citation Format

Share Document