mixed lineage kinase 3
Recently Published Documents


TOTAL DOCUMENTS

103
(FIVE YEARS 21)

H-INDEX

26
(FIVE YEARS 3)

JCI Insight ◽  
2021 ◽  
Author(s):  
Timothy D. Calamaras ◽  
Suchita Pande ◽  
Robert A.U. Baumgartner ◽  
Seung Kyum Kim ◽  
Joseph C. McCarthy ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Changjiang Ying ◽  
Jiao Dai ◽  
Gaoxia Fan ◽  
Zhongyuan Zhou ◽  
Tian Gan ◽  
...  

Ras-related C3 botulinum toxin substrate 1 (RAC1) activation plays a vital role in diabetic nephropathy (DN), but the exact mechanism remains unclear. In this study, we attempted to elucidate the precise mechanism of how RAC1 aggravates DN through cellular and animal experiments. In this study, DN was induced in mice by intraperitoneal injection of streptozotocin (STZ, 150mg/kg), and the RAC1 inhibitor NSC23766 was administered by tail vein injection. Biochemical indicators, cell proliferation and apoptosis, and morphological changes in the kidney were detected. The expression of phosphorylated c-Jun N-terminal kinase (p-JNK), nuclear factor-κB (NF-κB), and cleaved caspase-3 and the interaction between RAC1 and the mixed lineage kinase 3 (MLK3)-mitogen-activated protein kinase 7 (MKK7)-JNK signaling module were determined. Furthermore, the colocalization and direct co-interaction of RAC1 and MLK3 were confirmed. Our results showed that RAC1 accelerates renal damage and increases the expression of p-JNK, NF-κB, and cleaved caspase-3. However, inhibition of RAC1 ameliorated DN by downregulating p-JNK, NF-κB, and cleaved caspase-3. Also, RAC1 promoted the assembly of MLK3-MKK7-JNK, and NSC23766 blocked the interaction between RAC1 and MLK3-MKK7-JNK and inhibited the assembly of the MLK3-MKK7-JNK signaling module. Furthermore, RAC1 was combined with MLK3 directly, but the RAC1 Y40C mutant inhibited the interaction between RAC1 and MLK3. We demonstrated that RAC1 combining with MLK3 activates the MLK3-MKK7-JNK signaling module, accelerating DN occurrence and development, and RAC1 Y40 is an important site for binding of RAC1 to MLK3. This study illustrates the cellular and molecular mechanisms of how RAC1 accelerates DN and provides evidence of DN-targeted therapy.


2021 ◽  
Author(s):  
Navin Viswakarma ◽  
Gautam Sondarva ◽  
Daniel R. Principe ◽  
Rakesh Sathish Nair ◽  
Sandeep Kumar ◽  
...  

2020 ◽  
Vol 8 (2) ◽  
pp. e000494 ◽  
Author(s):  
Sandeep Kumar ◽  
Sunil Kumar Singh ◽  
Navin Viswakarma ◽  
Gautam Sondarva ◽  
Rakesh Sathish Nair ◽  
...  

BackgroundThe mitogen-activated protein kinases (MAPKs) are important for T cell survival and their effector function. Mixed lineage kinase 3 (MLK3) (MAP3K11) is an upstream regulator of MAP kinases and emerging as a potential candidate for targeted cancer therapy; yet, its role in T cell survival and effector function is not known.MethodsT cell phenotypes, apoptosis and intracellular cytokine expressions were analyzed by flow cytometry. The apoptosis-associated gene expressions in CD8+CD38+ T cells were measured using RT2 PCR array. In vivo effect of combined blockade of MLK3 and CD70 was analyzed in 4T1 tumor model in immunocompetent mice. The serum level of tumor necrosis factor-α (TNFα) was quantified by enzyme-linked immunosorbent assay.ResultsWe report that genetic loss or pharmacological inhibition of MLK3 induces CD70-TNFα-TNFRSF1a axis-mediated apoptosis in CD8+ T cells. The genetic loss of MLK3 decreases CD8+ T cell population, whereas CD4+ T cells are partially increased under basal condition. Moreover, the loss of MLK3 induces CD70-mediated apoptosis in CD8+ T cells but not in CD4+ T cells. Among the activated CD8+ T cell phenotypes, CD8+CD38+ T cell population shows more than five fold increase in apoptosis due to loss of MLK3, and the expression of TNFRSF1a is significantly higher in CD8+CD38+ T cells. In addition, we observed that CD70 is an upstream regulator of TNFα-TNFRSF1a axis and necessary for induction of apoptosis in CD8+ T cells. Importantly, blockade of CD70 attenuates apoptosis and enhances effector function of CD8+ T cells from MLK3−/− mice. In immune-competent breast cancer mouse model, pharmacological inhibition of MLK3 along with CD70 increased tumor infiltration of cytotoxic CD8+ T cells, leading to reduction in tumor burden largely via mitochondrial apoptosis.ConclusionTogether, these results demonstrate that MLK3 plays an important role in CD8+ T cell survival and effector function and MLK3-CD70 axis could serve as a potential target in cancer.


2020 ◽  
Vol 11 (7) ◽  
Author(s):  
Junyan Wang ◽  
Bo Deng ◽  
Qing Liu ◽  
Yusheng Huang ◽  
Weitao Chen ◽  
...  

Abstract Chronic heart failure (CHF) is the final outcome of many cardiovascular diseases, and is a severe health issue faced by the elderly population. Mixed lineage kinase 3 (MLK3), a member of MAP3K family, is associated with aging, inflammation, oxidative stress, and related diseases, such as CHF. MLK3 has also been reported to play an important role in protecting against cardiomyocyte injury; however, its function in myocardial fibrosis is unknown. To investigate the role of MLK3 in myocardial fibrosis, we inhibited the expression of MLK3, and examined cardiac function and remodeling in TAC mice. In addition, we assessed the expression of MLK3 protein in ventricular cells and its downstream associated protein. We found that MLK3 mainly regulates NF-κB/NLRP3 signaling pathway-mediated inflammation and that pyroptosis causes myocardial fibrosis in the early stages of CHF. Similarly, MLK3 mainly regulates the JNK/p53 signaling pathway-mediated oxidative stress and that ferroptosis causes myocardial fibrosis in the advanced stages of CHF. We also found that promoting the expression of miR-351 can inhibit the expression of MLK3, and significantly improve cardiac function in mice subjected to TAC. These results suggest the pyroptosis and ferroptosis induced by MLK3 signaling in cardiomyocytes are essential for adverse myocardial fibrosis, in response to pressure overload. Furthermore, miR-351, which has a protective effect on ventricular remodeling in heart failure caused by pressure overload, may be a key target for the regulation of MLK3.


2020 ◽  
Vol 40 (04) ◽  
pp. 346-357
Author(s):  
Samar H. Ibrahim ◽  
Petra Hirsova ◽  
Harmeet Malhi ◽  
Gregory J. Gores

AbstractNonalcoholic hepatitis (NASH) is the progressive inflammatory form of nonalcoholic fatty liver disease. Although the mechanisms of hepatic inflammation in NASH remain incompletely understood, emerging literature implicates the proinflammatory environment created by toxic lipid-induced hepatocyte injury, termed lipotoxicity. Interestingly, numerous NASH-promoting kinases in hepatocytes, immune cells, and adipocytes are activated by the lipotoxic insult associated with obesity. In the current review, we discuss recent advances in NASH-promoting kinases as disease mediators and therapeutic targets. The focus of the review is mainly on the mitogen-activated protein kinases including mixed lineage kinase 3, apoptosis signal-regulating kinase 1, c-Jun N-terminal kinase, and p38 MAPK; the endoplasmic reticulum (ER) stress kinases protein kinase RNA-like ER kinase and inositol-requiring protein-1α; as well as the Rho-associated protein kinase 1. We also discuss various pharmacological agents targeting these stress kinases in NASH that are under different phases of development.


2020 ◽  
Vol 117 (14) ◽  
pp. 7961-7970 ◽  
Author(s):  
Sandeep Kumar ◽  
Sunil Kumar Singh ◽  
Navin Viswakarma ◽  
Gautam Sondarva ◽  
Rakesh Sathish Nair ◽  
...  

Mixed lineage kinase 3 (MLK3), also known as MAP3K11, was initially identified in a megakaryocytic cell line and is an emerging therapeutic target in cancer, yet its role in immune cells is not known. Here, we report that loss or pharmacological inhibition of MLK3 promotes activation and cytotoxicity of T cells. MLK3 is abundantly expressed in T cells, and its loss alters serum chemokines, cytokines, and CD28 protein expression on T cells and its subsets. MLK3 loss or pharmacological inhibition induces activation of T cells in in vitro, ex vivo, and in vivo conditions, irrespective of T cell activating agents. Conversely, overexpression of MLK3 decreases T cell activation. Mechanistically, loss or inhibition of MLK3 down-regulates expression of a prolyl-isomerase, Ppia, which is directly phosphorylated by MLK3 to increase its isomerase activity. Moreover, MLK3 also phosphorylates nuclear factor of activated T cells 1 (NFATc1) and regulates its nuclear translocation via interaction with Ppia, and this regulates T cell effector function. In an immune-competent mouse model of breast cancer, MLK3 inhibitor increases Granzyme B-positive CD8+T cells and decreases MLK3 and Ppia gene expression in tumor-infiltrating T cells. Likewise, the MLK3 inhibitor in pan T cells, isolated from breast cancer patients, also increases cytotoxic CD8+T cells. These results collectively demonstrate that MLK3 plays an important role in T cell biology, and targeting MLK3 could serve as a potential therapeutic intervention via increasing T cell cytotoxicity in cancer.


Sign in / Sign up

Export Citation Format

Share Document