Faculty Opinions recommendation of Antifungal drug resistance evoked via RNAi-dependent epimutations.

Author(s):  
Aaron Mitchell ◽  
Katherine Lagree
Genetics ◽  
2003 ◽  
Vol 163 (4) ◽  
pp. 1287-1298
Author(s):  
James B Anderson ◽  
Caroline Sirjusingh ◽  
Ainslie B Parsons ◽  
Charles Boone ◽  
Claire Wickens ◽  
...  

Abstract We show that mode of selection, degree of dominance of mutations, and ploidy are determining factors in the evolution of resistance to the antifungal drug fluconazole in yeast. In experiment 1, yeast populations were subjected to a stepwise increase in fluconazole concentration over 400 generations. Under this regimen, two mutations in the same two chromosomal regions rose to high frequency in parallel in three replicate populations. These mutations were semidominant and additive in their effect on resistance. The first of these mutations mapped to PDR1 and resulted in the overexpression of the ABC transporter genes PDR5 and SNQ2. These mutations had an unexpected pleiotropic effect of reducing the residual ability of the wild type to reproduce at the highest concentrations of fluconazole. In experiment 2, yeast populations were subjected to a single high concentration of fluconazole. Under this regimen, a single recessive mutation appeared in each of three replicate populations. In a genome-wide screen of ∼4700 viable deletion strains, 13 were classified as resistant to fluconazole (ERG3, ERG6, YMR102C, YMR099C, YPL056C, ERG28, OSH1, SCS2, CKA2, SML1, YBR147W, YGR283C, and YLR407W). The mutations in experiment 2 all mapped to ERG3 and resulted in the overexpression of the gene encoding the drug target ERG11, but not PDR5 and SNQ2. Diploid hybrids from experiments 1 and 2 were less fit than the parents in the presence of fluconazole. In a variation of experiment 2, haploids showed a higher frequency of resistance than diploids, suggesting that degree of dominance and ploidy are important factors in the evolution of antifungal drug resistance.


2015 ◽  
Vol 59 (7) ◽  
pp. 4356-4359 ◽  
Author(s):  
Oliver Bader ◽  
Jana Tünnermann ◽  
Anna Dudakova ◽  
Marut Tangwattanachuleeporn ◽  
Michael Weig ◽  
...  

ABSTRACTAzole antifungal drug resistance inAspergillus fumigatusis an emerging problem in several parts of the world. Here we investigated the distribution of such strains in soils from Germany. At a general positivity rate of 12%, most prevalently, we found strains with the TR34/L98H and TR46/Y121F/T289A alleles, dispersed along a corridor across northern Germany. Comparison of the distributions of resistance alleles and genotypes between environment and clinical samples suggests the presence of local clinical clusters.


2019 ◽  
pp. 63-86
Author(s):  
Sharvari Dharmaiah ◽  
Rania A. Sherif ◽  
Pranab K. Mukherjee

2018 ◽  
Vol 62 (11) ◽  
Author(s):  
Qiannan Liu ◽  
Fan Yao ◽  
Guanglie Jiang ◽  
Min Xu ◽  
Si Chen ◽  
...  

ABSTRACT The fight against resistance to antifungal drugs requires a better understanding of the underlying cellular mechanisms. In order to gain insight into the mechanisms leading to antifungal drug resistance, we performed a genetic screen on a model organism, Schizosaccharomyces pombe, to identify genes whose overexpression caused resistance to antifungal drugs, including clotrimazole and terbinafine. We identified the phb2+ gene, encoding a highly conserved mitochondrial protein, prohibitin (Phb2), as a novel determinant of reduced susceptibility to multiple antifungal drugs. Unexpectedly, deletion of the phb2+ gene also exhibited antifungal drug resistance. Overexpression of the phb2+ gene failed to cause drug resistance when the pap1+ gene, encoding an oxidative stress-responsive transcription factor, was deleted. Furthermore, pap1+ mRNA expression was significantly increased when the phb2+ gene was overexpressed or deleted. Importantly, either overexpression or deletion of the phb2+ gene stimulated the synthesis of NO and reactive oxygen species (ROS), as measured by the cell-permeant fluorescent NO probe DAF-FM DA (4-amino-5-methylamino-2′,7′-difluorofluorescein diacetate) and the ROS probe DCFH-DA (2′,7′-dichlorodihydrofluorescein diacetate), respectively. Taken together, these results suggest that Phb2 dysfunction results in reduced susceptibility to multiple antifungal drugs by increasing NO and ROS synthesis due to dysfunctional mitochondria, thereby activating the transcription factor Pap1 in fission yeast.


2003 ◽  
Vol 36 (Supplement_1) ◽  
pp. S31-S41 ◽  
Author(s):  
Juergen Loeffler ◽  
David A. Stevens

PLoS Genetics ◽  
2009 ◽  
Vol 5 (10) ◽  
pp. e1000705 ◽  
Author(s):  
Anna M. Selmecki ◽  
Keely Dulmage ◽  
Leah E. Cowen ◽  
James B. Anderson ◽  
Judith Berman

Sign in / Sign up

Export Citation Format

Share Document