Faculty Opinions recommendation of Inflammatory caspases are innate immune receptors for intracellular LPS.

Author(s):  
Jerrold Weiss
Nature ◽  
2014 ◽  
Vol 514 (7521) ◽  
pp. 187-192 ◽  
Author(s):  
Jianjin Shi ◽  
Yue Zhao ◽  
Yupeng Wang ◽  
Wenqing Gao ◽  
Jingjin Ding ◽  
...  

Author(s):  
Changyoun Kim ◽  
Somin Kwon ◽  
Michiyo Iba ◽  
Brian Spencer ◽  
Edward Rockenstein ◽  
...  

AbstractSynucleinopathies are age-related neurological disorders characterized by the progressive deposition of α-synuclein (α-syn) aggregates and include Parkinson’s disease (PD) and dementia with Lewy bodies (DLB). Although cell-to-cell α-syn transmission is thought to play a key role in the spread of α-syn pathology, the detailed mechanism is still unknown. Neuroinflammation is another key pathological feature of synucleinopathies. Previous studies have identified several immune receptors that mediate neuroinflammation in synucleinopathies, such as Toll-like receptor 2 (TLR2). However, the species of α-syn aggregates varies from study to study, and how different α-syn aggregate species interact with innate immune receptors has yet to be addressed. Therefore, we investigated whether innate immune receptors can facilitate the uptake of different species of α-syn aggregates. Here, we examined whether stimulation of TLRs could modulate the cellular uptake and degradation of α-syn fibrils despite a lack of direct interaction. We observed that stimulation of TLR2 in vitro accelerated α-syn fibril uptake in neurons and glia while delaying the degradation of α-syn in neurons and astrocytes. Internalized α-syn was rapidly degraded in microglia regardless of whether TLR2 was stimulated. However, cellular α-syn uptake and degradation kinetics were not altered by TLR4 stimulation. In addition, upregulation of TLR2 expression in a synucleinopathy mouse model increased the density of Lewy-body-like inclusions and induced morphological changes in microglia. Together, these results suggest that cell type-specific modulation of TLR2 may be a multifaceted and promising therapeutic strategy for synucleinopathies; inhibition of neuronal and astroglial TLR2 decreases pathogenic α-syn transmission, but activation of microglial TLR2 enhances microglial extracellular α-syn clearance.


2008 ◽  
Vol 121 (2) ◽  
pp. 375-382.e9 ◽  
Author(s):  
Dominik Hartl ◽  
Natalie Lehmann ◽  
Florian Hoffmann ◽  
Annette Jansson ◽  
Andreas Hector ◽  
...  

2012 ◽  
Vol 148 (1-2) ◽  
pp. 129-135 ◽  
Author(s):  
Sérgio C. Oliveira ◽  
Leonardo A. de Almeida ◽  
Natalia B. Carvalho ◽  
Fernanda S. Oliveira ◽  
Thaís L.S. Lacerda

2020 ◽  
Vol 297 (1) ◽  
pp. 5-12
Author(s):  
Thirumala‐Devi Kanneganti

2020 ◽  
Vol 21 (18) ◽  
pp. 6456
Author(s):  
Yu Fukuda ◽  
Kazuki Nakajima ◽  
Tatsuro Mutoh

Infected or damaged tissues release multiple “alert” molecules such as alarmins and damage-associated molecular patterns (DAMPs) that are recognized by innate immune receptors, and induce tissue inflammation, regeneration, and repair. Recently, an extract from inflamed rabbit skin inoculated with vaccinia virus (Neurotropin®, NTP) was found to induce infarct tolerance in mice receiving permanent ischemic attack to the middle cerebral artery. Likewise, we report herein that NTP prevented the neurite retraction in PC12 cells by nerve growth factor (NGF) deprivation. This effect was accompanied by interaction of Fyn with high-affinity NGF receptor TrkA. Sucrose density gradient subcellular fractionation of NTP-treated cells showed heretofore unidentified membrane fractions with a high-buoyant density containing Trk, B subunit of cholera toxin-bound ganglioside, flotillin-1 and Fyn. Additionally, these new membrane fractions also contained Toll-like receptor 4 (TLR4). Inhibition of TLR4 function by TAK-242 prevented the formation of these unidentified membrane fractions and suppressed neuroprotection by NTP. These observations indicate that NTP controls TrkA-mediated signaling through the formation of clusters of new membrane microdomains, thus providing a platform for crosstalk between neurotrophic and innate immune receptors. Neuroprotective mechanisms through the interaction with innate immune systems may provide novel mechanism for neuroprotection.


Sign in / Sign up

Export Citation Format

Share Document