Faculty Opinions recommendation of Renal Ischemia/Reperfusion Injury in Soluble Epoxide Hydrolase-Deficient Mice.

Author(s):  
John Imig
PLoS ONE ◽  
2016 ◽  
Vol 11 (1) ◽  
pp. e0145645 ◽  
Author(s):  
Ye Zhu ◽  
Maximilian Blum ◽  
Uwe Hoff ◽  
Tim Wesser ◽  
Mandy Fechner ◽  
...  

PLoS ONE ◽  
2012 ◽  
Vol 7 (1) ◽  
pp. e29887 ◽  
Author(s):  
Peter F. Mount ◽  
Kurt Gleich ◽  
Shanna Tam ◽  
Scott A. Fraser ◽  
Suet-Wan Choy ◽  
...  

2007 ◽  
Vol 293 (3) ◽  
pp. F741-F747 ◽  
Author(s):  
Kathrin Hochegger ◽  
Tobias Schätz ◽  
Philipp Eller ◽  
Andrea Tagwerker ◽  
Dorothea Heininger ◽  
...  

T cells have been implicated in the pathogenesis of renal ischemia-reperfusion injury (IRI). To date existing data about the role of the T cell receptor (Tcr) are contradictory. We hypothesize that the Tcr plays a prominent role in the late phase of renal IRI. Therefore, renal IRI was induced in α/β, γ/δ T cell-deficient and wild-type mice by clamping renal pedicles for 30 min and reperfusing for 24, 48, 72, and 120 h. Serum creatinine increased equally in all three groups 24 h after ischemia but significantly improved in Tcr-deficient animals compared with wild-type controls after 72 h. A significant reduction in renal tubular injury and infiltration of CD4+ T-cells in both Tcr-deficient mice compared with wild-type controls was detected. Infiltration of α/β T cells into the kidney was reduced in γ/δ T cell-deficient mice until 72 h after ischemia. In contrast, γ/δ T cell infiltration was equal in wild-type and α/β T cell-deficient mice, suggesting an interaction between α/β and γ/δ T cells. Data from γ/δ T cell-deficient mice were confirmed by in vivo depletion of γ/δ T cells in C57BL/6 mice. Whereas α/β T cell-deficient mice were still protected after 120 h, γ/δ T cell-deficient mice showed a “delayed wild-type phenotype” with a dramatic increase in kidney-infiltrating α/β, Tcr-expressing CD4+ T-cells. This report provides further evidence that α/β T cells are major effector cells in renal IRI, whereas γ/δ T cells play a role as mediator cells in the first 72 h of renal IRI.


2003 ◽  
Vol 285 (2) ◽  
pp. F319-F325 ◽  
Author(s):  
Naoko Yokota ◽  
Melissa Burne-Taney ◽  
Lorraine Racusen ◽  
Hamid Rabb

Recent data support a modulatory role for CD4 T cells in experimental renal ischemia-reperfusion injury (IRI). CD4 T cells can functionally differentiate to either a Th1 (IFN-γ producing) or the counterbalancing Th2 (IL-4) phenotype. The enzymes signal transducers and activators of transcription (STAT) 4 and STAT6 regulate Th1 or Th2 differentiation and cytokine production, respectively. We therefore hypothesized that mice that were STAT4 deficient would be protected from renal IRI and that STAT6-deficient mice would have a more severe course. Intracellular cytokine staining of splenocytes from STAT4–/– or STAT6–/– exhibited distinct IFN-γ and IL-4 cytokine expression profiles. STAT6–/– had markedly worse renal function and tubular injury postischemia compared with wild type. STAT4–/– had only mildly improved function. Renal phagocyte infiltration and ICAM-1 upregulation were similar in STAT4–/–, STAT6–/–, and wild type. To evaluate if the mechanism of the marked worsening in the STAT6–/– mice could be due to IL-4 deficiency, IL-4-deficient mice were studied and had similar postischemic phenotype to STAT6–/– mice. These data demonstrate that the STAT6 pathway has a major protective role in renal IRI. IL-4 deficiency is a likely mechanism underlying the STAT6 effect. A “yin-yang” role for inflammation is emerging in renal IRI, similar to recent observations in atherosclerosis.


2004 ◽  
Vol 171 (4S) ◽  
pp. 487-487
Author(s):  
Motoo Araki ◽  
Masayoshi Miura ◽  
Hiromi Kumon ◽  
John Belperio ◽  
Robert Strieter ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document