Faculty Opinions recommendation of Tumor innate immunity primed by specific interferon-stimulated endogenous retroviruses.

Author(s):  
Howard Young
Science ◽  
2016 ◽  
Vol 351 (6277) ◽  
pp. 1083-1087 ◽  
Author(s):  
E. B. Chuong ◽  
N. C. Elde ◽  
C. Feschotte

2018 ◽  
Vol 24 (8) ◽  
pp. 1143-1150 ◽  
Author(s):  
Israel Cañadas ◽  
Rohit Thummalapalli ◽  
Jong Wook Kim ◽  
Shunsuke Kitajima ◽  
Russell William Jenkins ◽  
...  

Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1019
Author(s):  
Matthias Neulinger-Muñoz ◽  
Dominik Schaack ◽  
Svetlana P. Grekova ◽  
Andrea S. Bauer ◽  
Thomas Giese ◽  
...  

Although the oncolytic parvovirus H-1PV has entered clinical trials, predicting therapeutic success remains challenging. We investigated whether the antiviral state in tumor cells determines the parvoviral oncolytic efficacy. The interferon/interferon-stimulated genes (IFN/ISG)-circuit and its major configurator, human endogenous retroviruses (HERVs), were evaluated using qRT-PCR, ELISA, Western blot, and RNA-Seq techniques. In pancreatic cancer cell lines, H-1PV caused a late global shutdown of innate immunity, whereby the concomitant inhibition of HERVs and IFN/ISGs was co-regulatory rather than causative. The growth-inhibitory IC50 doses correlated with the power of suppression but not with absolute ISG levels. Moreover, H-1PV was not sensitive to exogenous IFN despite upregulated antiviral ISGs. Such resistance questioned the biological necessity of the oncotropic ISG-shutdown, which instead might represent a surrogate marker for personalized oncolytic efficacy. The disabled antiviral homeostasis may modify the activity of other viruses, as demonstrated by the reemergence of endogenous AluY-retrotransposons. This way of suppression may compromise the interferogenicity of drugs having gemcitabine-like mechanisms of action. This shortcoming in immunogenic cell death induction is however amendable by immune cells which release IFN in response to H-1PV.


2021 ◽  
Author(s):  
Huan Luo ◽  
Xuming Hu ◽  
Huixian Wu ◽  
Gul Zaib ◽  
Wenxian Chai ◽  
...  

Abstract Endogenous retroviruses (ERVs) are remnants of ancient retroviral infections dating back many millions of years, and their derived transcripts with viral signatures are important sources of long noncoding RNAs (lncRNAs). We have previously shown that the chicken ERV-derived lncRNA lnc-ALVE1-AS1 exerts antiviral innate immunity in chicken embryo fibroblasts. However, it is not clear whether this endogenous retroviral RNA has a similar function in immune cells. Here, we found that lnc-ALVE1-AS1 was persistently inhibited in chicken macrophages after avian leukosis virus subgroup J (ALV-J) infection. Furthermore, overexpression of lnc-ALVE1-AS1 significantly inhibited the proliferation of exogenous ALV-J, whereas knockdown of lnc-ALVE1-AS1 promoted the proliferation of ALV-J in chicken macrophages. This phenomenon is attributed to the induction of antiviral innate immunity by lnc-ALVE1-AS1 in macrophages, whereas knockdown of lnc-ALVE1-AS1 had the opposite effect. Mechanistically, lnc-ALVE1-AS1 can be sensed by the cytosolic pattern recognition receptor TLR3 and trigger the type I interferons response. The present study provides novel insights into the antiviral defense of ERV-derived lncRNAs in macrophages and offers new strategies for future antiviral solutions.


Sign in / Sign up

Export Citation Format

Share Document