regulatory evolution
Recently Published Documents


TOTAL DOCUMENTS

192
(FIVE YEARS 55)

H-INDEX

31
(FIVE YEARS 6)

2022 ◽  
Author(s):  
David M Luecke ◽  
Gavin R Rice ◽  
Artyom Kopp

The evolution of gene expression via cis-regulatory changes is well established as a major driver of phenotypic evolution. However, relatively little is known about the influence of enhancer architecture and intergenic interactions on regulatory evolution. We address this question by examining chemosensory system evolution in Drosophila. D. prolongata males show a massively increased number of chemosensory bristles compared to females and males of sibling species. This increase is driven by sex-specific transformation of ancestrally mechanosensory organs. Consistent with this phenotype, the Pox neuro transcription factor (Poxn), which specifies chemosensory bristle identity, shows expanded expression in D. prolongata males. Poxn expression is controlled by non-additive interactions among widely dispersed enhancers. Although some D. prolongata Poxn enhancers show increased activity, the additive component of this increase is slight, suggesting most changes in Poxn expression are due to epistatic interactions between Poxn enhancers and trans-regulatory factors. Indeed, the expansion of D. prolongata Poxn enhancer activity is only observed in cells that express doublesex (dsx), the gene that controls sexual differentiation in Drosophila and also shows increased expression in D. prolongata males due to cis-regulatory changes. Although expanded dsx expression may contribute to increased activity of D. prolongata Poxn enhancers, this interaction is not sufficient to explain the full expansion of Poxn expression, suggesting that cis-trans interactions between Poxn, dsx, and additional unknown genes are necessary to produce the derived D. prolongata phenotype. Overall, our results demonstrate the importance of epistatic gene interactions for evolution, particularly when pivotal genes have complex regulatory architecture.


2021 ◽  
Author(s):  
Peter D Price ◽  
Daniela H Palmer Droguett ◽  
Jessica A Taylor ◽  
Dong W Kim ◽  
Elsie S Place ◽  
...  

A substantial amount of phenotypic diversity results from changes in gene regulation. Understanding how regulatory diversity evolves is therefore a key priority in identifying mechanisms of adaptive change. However, in contrast to powerful models of sequence evolution, we lack a consensus model of regulatory evolution. Furthermore, recent work has shown that many of the comparative approaches used to study gene regulation are subject to biases that can lead to false signatures of selection. In this review, we first outline the main approaches for describing regulatory evolution and their inherent biases. Next, we bridge the gap between the fields of comparative phylogenetic methods and transcriptomics to reinforce the main pitfalls of inferring regulatory selection and use simulation studies to show that shifts in tissue composition can heavily bias inferences of selection. We close by highlighting the multi-dimensional nature of regulatory variation and identifying major, unanswered questions in disentangling how selection acts on the transcriptome.


2021 ◽  
Author(s):  
Conor J Kelly ◽  
Carol Chitko-McKown ◽  
Edward B Chuong

Cattle are an important livestock species, and mapping the genomic architecture of agriculturally relevant traits such as disease susceptibility is a major challenge in the bovine research community. Lineage-specific transposable elements (TEs) are increasingly recognized to contribute to gene regulatory evolution and variation, but this possibility has been largely unexplored in ruminant genomes. We conducted epigenomic profiling of the type II interferon (IFN) response in bovine cells, and found thousands of ruminant-specific TEs including MER41_BT and Bov-A2 elements predicted to act as IFN-inducible enhancer elements. CRISPR knockout experiments in bovine cells established that critical immune factors including IFNAR2 and IL2RB are transcriptionally regulated by TE-derived enhancers. Finally, population genomic analysis of 39 individuals revealed that a subset of TE-derived enhancers represent polymorphic insertion sites in modern cattle. Our study reveals that lineage-specific TEs have shaped the evolution of ruminant IFN responses, and potentially continue to contribute to immune gene regulatory differences across modern breeds and individuals. Together with previous work in human cells, our findings demonstrate that lineage-specific TEs have been independently co-opted to regulate IFN-inducible gene expression in multiple species, supporting TE co-option as a recurrent mechanism driving the evolution of IFN-inducible transcriptional networks.


2021 ◽  
Vol 44 (3) ◽  
Author(s):  
Anna Huggins

Automation is transforming how government agencies make decisions. This article analyses three distinctive features of automated decision-making that are difficult to reconcile with key doctrines of administrative law developed for a human-centric decision-making context. First, the complex, multi-faceted decision-making requirements arising from statutory interpretation and administrative law principles raise questions about the feasibility of designing automated systems to cohere with these expectations. Secondly, whilst the courts have emphasised a human mental process as a criterion of a valid decision, many automated decisions are made with limited or no human input. Thirdly, the new types of bias associated with opaque automated decision-making are not easily accommodated by the bias rule, or other relevant grounds of judicial review. This article, therefore, argues that doctrinal and regulatory evolution are both needed to address these disconnections and maintain the accountability and contestability of administrative decisions in the digital age.


2021 ◽  
pp. 1-12
Author(s):  
Paul Gift

This paper investigates the impact of changes in judging criteria on 10-8 scores in Zuffa-owned mixed martial arts (MMA) promotions. Utilizing a differences-in-differences framework, the 2017 liberalization of 10-8 scoring criteria in the Unified Rules of MMA is examined across various judge groups. Findings suggest that traveling judges and Nevada judges – those most likely to be at the forefront of the regulatory evolution of the sport – had already liberalized their 10-8 scoring one year prior to the effective date of the new criteria. Other judges appear to have effectively implemented the new criteria since January 2017 with 10-8 probabilities on par with traveling and Nevada judges. The effect of an earlier change in judging criteria is also examined in Nevada. Results suggest the numerous and distributed regulatory agencies involved in the sport of MMA were effective in the implementation of new policies for scoring rounds.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
F. He ◽  
K. A. Steige ◽  
V. Kovacova ◽  
U. Göbel ◽  
M. Bouzid ◽  
...  

AbstractPhenotypic plasticity is the variation in phenotype that a single genotype can produce in different environments and, as such, is an important component of individual fitness. However, whether the effect of new mutations, and hence evolution, depends on the direction of plasticity remains controversial. Here, we identify the cis-acting modifications that have reshaped gene expression in response to dehydration stress in three Arabidopsis species. Our study shows that the direction of effects of most cis-regulatory variants differentiating the response between A. thaliana and the sister species A. lyrata and A. halleri depends on the direction of pre-existing plasticity in gene expression. A comparison of the rate of cis-acting variant accumulation in each lineage indicates that the selective forces driving adaptive evolution in gene expression favors regulatory changes that magnify the stress response in A. lyrata. The evolutionary constraints measured on the amino-acid sequence of these genes support this interpretation. In contrast, regulatory changes that mitigate the plastic response to stress evolved more frequently in A. halleri. Our results demonstrate that pre-existing plasticity may be a stepping stone for adaptation, but its selective remodeling differs between lineages.


2021 ◽  
Author(s):  
Zsolt Merenyi ◽  
Mate Viragh ◽  
Emile Gluck-Thaler ◽  
Jason C. Slot ◽  
Brigitta Kiss ◽  
...  

Multicellularity has been one of the most important innovations in the history of life. The role of regulatory evolution in driving transitions to multicellularity is being increasingly recognized; however, patterns and drivers of transcriptome evolution are poorly known in many clades. We here reveal that allele-specific expression, natural antisense transcripts and developmental gene expression, but not RNA editing or a developmental hourglass act in concert to shape the transcriptome of complex multicellular fruiting bodies of fungi. We find that transcriptional patterns of genes are strongly predicted by their evolutionary age. Young genes showed more expression variation both in time and space, possibly because of weaker evolutionary constraint, calling for partially non-adaptive interpretations of evolutionary changes in the transcriptome of multicellular fungi. Gene age also correlated with function, allowing us to separate fruiting body gene expression related to simple sexual development from that potentially underlying complex morphogenesis. Our study highlighted a transcriptional complexity that provides multiple speeds for transcriptome evolution, but also that constraints associated with gene age shape transcriptomic patterns during transitions to complex multicellularity in fungi.


Genetics ◽  
2021 ◽  
Author(s):  
Yuheng Huang ◽  
Justin B Lack ◽  
Grant T Hoppel ◽  
John E Pool

Abstract Changes in gene regulation at multiple levels may comprise an important share of the molecular changes underlying adaptive evolution in nature. However, few studies have assayed within- and between-population variation in gene regulatory traits at a transcriptomic scale, and therefore inferences about the characteristics of adaptive regulatory changes have been elusive. Here, we assess quantitative trait differentiation in gene expression levels and alternative splicing (intron usage) between three closely-related pairs of natural populations of Drosophila melanogaster from contrasting thermal environments that reflect three separate instances of cold tolerance evolution. The cold-adapted populations were known to show population genetic evidence for parallel evolution at the SNP level, and here we find evidence for parallel expression evolution between them, with stronger parallelism at larval and adult stages than for pupae. We also implement a flexible method to estimate cis- versus trans-encoded contributions to expression or splicing differences at the adult stage. The apparent contributions of cis- versus trans-regulation to adaptive evolution vary substantially among population pairs. While two of three population pairs show a greater enrichment of cis-regulatory differences among adaptation candidates, trans-regulatory differences are more likely to be implicated in parallel expression changes between population pairs. Genes with significant cis-effects are enriched for signals of elevated genetic differentiation between cold- and warm-adapted populations, suggesting that they are potential targets of local adaptation. These findings expand our knowledge of adaptive gene regulatory evolution and our ability to make inferences about this important and widespread process.


Author(s):  
Jukka-Pekka Verta ◽  
Henry J Barton ◽  
Victoria Pritchard ◽  
Craig R Primmer

Abstract Whole genome duplications (WGD) have been considered as springboards that potentiate lineage diversification through increasing functional redundancy. Divergence in gene regulatory elements is a central mechanism for evolutionary diversification, yet the patterns and processes governing regulatory divergence following events that lead to massive functional redundancy, such as WGD, remain largely unknown. We studied the patterns of divergence and strength of natural selection on regulatory elements in the Atlantic salmon (Salmo salar) genome, which has undergone WGD 100-80 Mya. Using ChIPmentation, we first show that H3K27ac, a histone modification typical to enhancers and promoters, is associated with genic regions, tissue specific transcription factor binding motifs, and with gene transcription levels in immature testes. Divergence in transcription between duplicated genes from WGD (ohnologs) correlated with difference in the number of proximal regulatory elements, but not with promoter elements, suggesting that functional divergence between ohnologs after WGD is mainly driven by enhancers. By comparing H3K27ac regions between duplicated genome blocks, we further show that a longer polyploid state post-WGD has constrained regulatory divergence. Patterns of genetic diversity across natural populations inferred from re-sequencing indicate that recent evolutionary pressures on H3K27ac regions are dominated by largely neutral evolution. In sum, our results suggest that post-WGD functional redundancy in regulatory elements continues to have an impact on the evolution of the salmon genome, promoting largely neutral evolution of regulatory elements despite their association with transcription levels. These results highlight a case where genome-wide regulatory evolution following an ancient WGD is dominated by genetic drift.


Sign in / Sign up

Export Citation Format

Share Document