Faculty Opinions recommendation of Defining the subcellular distribution and metabolic channeling of phosphatidylinositol.

Author(s):  
Aaron Neiman
Author(s):  
Ronald D. Edstrom ◽  
Xiuru Yang ◽  
Mary E. Gurnack ◽  
Marcia A. Miller ◽  
Rui Yang ◽  
...  

Many of the questions in biochemistry and cell biology are concerned with the relationships of proteins and other macromolecules in complex arrays which are responsible for carrying out metabolic sequences. The simplistic notion that the enzymes we isolate in soluble form from the cytoplasm were also soluble in vivo is being replaced by the concept that these enzymes occur in organized systems within the cell. In this newer view, the cytoplasm is organized and the “soluble enzymes” are in fact fixed in the cellular space and the only soluble components of the cell are small metabolites, inorganic ions etc. Further support for the concept of metabolic organization is provided by the evidence of metabolic channeling. It has been shown that for some metabolic pathways, the intermediates are not in free diffusion equilibrium with the bulk liquid in the cell but are passed along, more or less directly, from one enzyme to the next.


1993 ◽  
Vol 100 ◽  
pp. 222S-225S ◽  
Author(s):  
Takakazu Shibata ◽  
Stan Pavel ◽  
Nico P M Smit ◽  
Yutaka Mishima

2014 ◽  
Vol 48 (4) ◽  
pp. 381-388
Author(s):  
Dong Meng ◽  
Zhao Yunlin ◽  
Ku Wenzhen ◽  
Zhou Xiaomei ◽  
Li Yanzi

1985 ◽  
Vol 225 (1) ◽  
pp. 51-58 ◽  
Author(s):  
T Saermark ◽  
N Flint ◽  
W H Evans

Endosome fractions were isolated from rat liver homogenates on the basis of the subcellular distribution of circulating ligands, e.g. 125I-asialotransferrin internalized by hepatocytes by a receptor-mediated process. The distribution of endocytosed 125I-asialotransferrin 1-2 min and 15 min after uptake by liver and a monensin-activated Mg2+-dependent ATPase activity coincided on linear gradients of sucrose and Nycodenz. The monensin-activated Mg2+-ATPase was enriched relative to the liver homogenates up to 60-fold in specific activity in the endosome fractions. Contamination of the endosome fractions by lysosomes, endoplasmic reticulum, mitochondria, plasma membranes and Golgi-apparatus components was low. By use of 9-aminoacridine, a probe for pH gradients, the endosome vesicles were shown to acidify on addition of ATP. Acidification was reversed by addition of monensin. The results indicate that endosome fractions contain an ATP-driven proton pump. The ionophore-activated Mg2+-ATPase in combination with the presence of undegraded ligands in the endosome fractions emerge as linked markers for this new subcellular organelle.


Sign in / Sign up

Export Citation Format

Share Document