Faculty Opinions recommendation of Fam72a enforces error-prone DNA repair during antibody diversification.

Author(s):  
Kefei Yu
Nature ◽  
2021 ◽  
Author(s):  
Mélanie Rogier ◽  
Jacques Moritz ◽  
Isabelle Robert ◽  
Chloé Lescale ◽  
Vincent Heyer ◽  
...  

2021 ◽  
Author(s):  
Shanzhi Wang ◽  
Kyeryoung Lee ◽  
Stephen Gray ◽  
Yongwei Zhang ◽  
Catherine Tang ◽  
...  

ABSTRACTDNA damage response pathways rely extensively on nuclease activity to process DNA intermediates. Exonuclease 1 (EXO1) is a pleiotropic evolutionary conserved DNA exonuclease involved in various DNA repair pathways, replication, antibody diversification, and meiosis. But, whether EXO1 facilitates these DNA metabolic processes through its enzymatic or scaffolding functions remains unclear. Here we dissect the contribution of EXO1 enzymatic versus scaffolding activity by comparing Exo1DA/DA mice expressing a proven nuclease-dead mutant form of EXO1 to entirely EXO1-deficient Exo1−/− and EXO1 wild type Exo1+/+ mice. We show that Exo1DA/DA and Exo1−/− mice are compromised in canonical DNA repair processing, suggesting that the EXO1 enzymatic role is important for error-free DNA mismatch and double-strand break repair pathways. However, in non-canonical repair pathways, EXO1 appears to have a more nuanced function. Next-generation sequencing of heavy chain V region in B cells showed the mutation spectra of Exo1DA/DA mice to be intermediate between Exo1+/+ and Exo1−/− mice, suggesting that both catalytic and scaffolding roles of EXO1 are important for somatic hypermutation. Similarly, while overall class switch recombination in Exo1DA/DA and Exo1−/− mice was comparably defective, switch-switch junction analysis suggests that EXO1 might fulfill an additional scaffolding function downstream of class switching. In contrast to Exo1−/− mice that are infertile, meiosis progressed normally in Exo1DA/DA and Exo1+/+ cohorts, indicating that a structural but not the nuclease function of EXO1 is critical for meiosis. However, both Exo1DA/DA and Exo1−/− mice displayed similar mortality and cancer predisposition profiles. Taken together, these data demonstrate that EXO1 has both scaffolding and enzymatic functions in distinct DNA repair processes and suggest a more composite and intricate role for EXO1 in DNA metabolic processes and disease.


2018 ◽  
Author(s):  
Steven Findlay ◽  
John Heath ◽  
Vincent M. Luo ◽  
Abba Malina ◽  
Théo Morin ◽  
...  

SUMMARYDNA double-strand breaks (DSBs) can be repaired by two major pathways: non-homologous end-joining (NHEJ) and homologous recombination (HR). DNA repair pathway choice is governed by the opposing activities of 53BP1, in complex with its effectors RIF1 and REV7, and BRCA1. However, it remains unknown how the 53BP1/RIF1/REV7 complex stimulates NHEJ and restricts HR to the S/G2 phases of the cell cycle. Using a mass spectrometry (MS)-based approach, we identify 11 high-confidence REV7 interactors and elucidate the role of a previously undescribed factor, FAM35A/SHDL2, as a novel effector of REV7 in the NHEJ pathway. FAM35A depletion impairs NHEJ-mediated DNA repair and compromises antibody diversification by class switch recombination (CSR) in B-cells. FAM35A accumulates at DSBs in a 53BP1-, RIF1- and REV7-dependent manner and antagonizes HR by limiting DNA end resection. In fact, FAM35A is part of a larger complex composed of REV7 and another previously uncharacterized protein, C20orf196/SHDL1, which promotes NHEJ and limits HR. Together, these results establish FAM35A as a novel effector of REV7 in controlling the decision-making process during DSB repair.


2005 ◽  
Vol 173 (4S) ◽  
pp. 71-71
Author(s):  
Peter E. Clark ◽  
M. Craig Hall ◽  
Kristin L. Lockett ◽  
Jianfeng Xu ◽  
Sigun L. Zheng ◽  
...  

2006 ◽  
Vol 175 (4S) ◽  
pp. 317-317
Author(s):  
Xifeng Wu ◽  
Jian Gu ◽  
H. Barton Grossman ◽  
Christopher I. Amos ◽  
Carol Etzel ◽  
...  

2005 ◽  
Vol 36 (7) ◽  
pp. 42
Author(s):  
PATRICE WENDLING
Keyword(s):  

1998 ◽  
Vol 3 (1) ◽  
pp. 11-13 ◽  
Author(s):  
Vilhelm A Bohr ◽  
Grigoiy Dianov ◽  
Adayabalam Balajee ◽  
Alfred May ◽  
David K Orren
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document