non homologous end joining
Recently Published Documents


TOTAL DOCUMENTS

875
(FIVE YEARS 350)

H-INDEX

58
(FIVE YEARS 10)

2022 ◽  
Author(s):  
Aditya Mojumdar ◽  
Nancy Adam ◽  
Jennifer A Cobb

A DNA double strand break (DSB) is primarily repaired by one of two canonical pathways, non-homologous end-joining (NHEJ) and homologous recombination (HR). NHEJ requires no or minimal end processing for ligation, whereas HR requires 5 end resection followed by a search for homology. The main event that determines the mode of repair is the initiation of 5 resection because if resection starts, then NHEJ cannot occur. Nej1 is a canonical NHEJ factor that functions at the cross-roads of repair pathway choice and prior to its function in stimulating Dnl4 ligase. Nej1 competes with Dna2, inhibiting its recruitment to DSBs and thereby inhibiting resection. The highly conserved C-terminal region (CTR) of Nej1 (330- 338) is important for two events that drive NHEJ, stimulating ligation and inhibiting resection, but it is dispensable for end-bridging. By combining nej1 point mutants with nuclease-dead dna2-1, we find that Nej1-F335 is essential for end-joining whereas V338 promotes NHEJ indirectly through inhibiting Dna2-mediated resection.


2022 ◽  
Author(s):  
Daniel Gomez-Cabello ◽  
Georgios Pappas ◽  
Diana Aguilar-Morante ◽  
Christoffel Dinant ◽  
Jiri Bartek

The RNA world is changing our views about sensing and resolution of DNA damage. Here, we developed single-molecule DNA/RNA analysis approaches to visualize how nascent RNA facilitates the repair of DNA double-strand breaks (DSBs). RNA polymerase II (RNAPII) is crucial for DSB resolution in human cells. DSB-flanking, RNAPII-generated nascent RNA forms RNA:DNA hybrids, guiding the upstream DNA repair steps towards favouring the error-free Homologous Recombination (HR) pathway over Non-Homologous End Joining. Specific RNAPII inhibitor, THZ1, impairs recruitment of essential HR proteins to DSBs, implicating nascent RNA in DNA end resection, initiation and execution of HR repair. We further propose that resection factor CtIP interacts with and re-activates RNAPII when paused by the RNA:DNA hybrids, collectively promoting faithful repair of chromosome breaks to maintain genomic integrity.


2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Andrei Kouranov ◽  
Charles Armstrong ◽  
Ashok Shrawat ◽  
Vladimir Sidorov ◽  
Scott Huesgen ◽  
...  

AbstractNaturally occurring chromosomal crossovers (CO) during meiosis are a key driver of genetic diversity. The ability to target CO at specific allelic loci in hybrid plants would provide an advantage to the plant breeding process by facilitating trait introgression, and potentially increasing the rate of genetic gain. We present the first demonstration of targeted CO in hybrid maize utilizing the CRISPR Cas12a system. Our experiments showed that stable and heritable targeted CO can be produced in F1 somatic cells using Cas12a at a significantly higher rate than the natural CO in the same interval. Molecular characterization of the recombinant plants demonstrated that the targeted CO were driven by the non-homologous end joining (NHEJ) or HDR repair pathways, presumably during the mitotic cell cycle. These results are a step towards the use of RNA-guided nuclease technology to simplify the creation of targeted genome combinations in progeny and accelerate breeding.


2022 ◽  
Vol 12 ◽  
Author(s):  
Alice Libri ◽  
Timea Marton ◽  
Ludovic Deriano

DNA double-strand breaks (DSBs) are highly toxic lesions that can be mended via several DNA repair pathways. Multiple factors can influence the choice and the restrictiveness of repair towards a given pathway in order to warrant the maintenance of genome integrity. During V(D)J recombination, RAG-induced DSBs are (almost) exclusively repaired by the non-homologous end-joining (NHEJ) pathway for the benefit of antigen receptor gene diversity. Here, we review the various parameters that constrain repair of RAG-generated DSBs to NHEJ, including the peculiarity of DNA DSB ends generated by the RAG nuclease, the establishment and maintenance of a post-cleavage synaptic complex, and the protection of DNA ends against resection and (micro)homology-directed repair. In this physiological context, we highlight that certain DSBs have limited DNA repair pathway choice options.


2022 ◽  
Author(s):  
Bethan Clark ◽  
Joel Elkin ◽  
Aleksandra Marconi ◽  
George F Turner ◽  
Alan M Smith ◽  
...  

Identifying genetic loci underlying trait variation provides insights into the mechanisms of diversification, but demonstrating causality and characterising the role of genetic loci requires testing candidate gene function, often in non-model species. Here we establish CRISPR/Cas9 editing in Astatotilapia calliptera, a generalist cichlid of the remarkably diverse Lake Malawi radiation. By targeting the gene oca2 required for melanin synthesis in other vertebrate species, we show efficient editing and germline transmission. Gene edits include indels in the coding region, likely a result of non-homologous end joining, and a large deletion in the 3′ UTR due to homology-directed repair. We find that oca2 knock-out A. calliptera lack melanin, which may be useful for developmental imaging in embryos and studying colour pattern formation in adults. As A. calliptera resembles the presumed generalist ancestor of the Lake Malawi cichlids radiation, establishing genome editing in this species will facilitate investigating speciation, adaptation and trait diversification in this textbook radiation.


Biomedicines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 82
Author(s):  
Dimitra T. Stefanou ◽  
Vassilis L. Souliotis ◽  
Roubini Zakopoulou ◽  
Michalis Liontos ◽  
Aristotelis Bamias

Ovarian cancer (OC) is the seventh most common type of cancer in women worldwide. Treatment for OC usually involves a combination of surgery and chemotherapy with carboplatin and paclitaxel. Platinum-based agents exert their cytotoxic action through development of DNA damage, including the formation of intra- and inter-strand cross-links, as well as single-nucleotide damage of guanine. Although these agents are highly efficient, intrinsic and acquired resistance during treatment are relatively common and remain a major challenge for platinum-based therapy. There is strong evidence to show that the functionality of various DNA repair pathways significantly impacts tumor response to treatment. Various DNA repair molecular components were found deregulated in ovarian cancer, including molecules involved in homologous recombination repair (HRR), nucleotide excision repair (NER), mismatch repair (MMR), non-homologous end-joining (NHEJ), and base excision repair (BER), which can be possibly exploited as novel therapeutic targets and sensitive/effective biomarkers. This review attempts to summarize published data on this subject and thus help in the design of new mechanistic studies to better understand the involvement of the DNA repair in the platinum drugs resistance, as well as to suggest new therapeutic perspectives and potential targets.


2021 ◽  
Author(s):  
Lejon Kralemann ◽  
Sylvia de Pater ◽  
Hexi Shen ◽  
Susan Kloet ◽  
Robin van Schendel ◽  
...  

Abstract Agrobacterium tumefaciens, a pathogenic bacterium capable of transforming plants through horizontal gene transfer, is nowadays the preferred vector for plant genetic engineering. The vehicle for transfer is the T-strand, a single-stranded DNA molecule bound by the bacterial protein VirD2, which guides T-DNA into the plants nucleus where it integrates. How VirD2 is removed from T-DNA, and which mechanism acts to attach the liberated end to the plant genome is currently unknown. Here, using newly developed technology that yields hundreds of T-DNA integrations in somatic tissue of Arabidopsis thaliana, we uncover two redundant mechanisms for the genomic capture of the T-DNA’s 5’ end. Different from capture of the 3’ end of the T-DNA, which is the exclusive action of polymerase theta-mediated end joining (TMEJ), 5’ attachment is accomplished either by TMEJ or by canonical non-homologous end joining (cNHEJ). We further find that TMEJ needs MRE11, whereas cNHEJ requires TDP2 to remove the 5’-end blocking protein VirD2. As a consequence, T-DNA integration is severely impaired in plants deficient for both MRE11 and TDP2 (or other cNHEJ factors). In support of MRE11 and cNHEJ specifically acting on the 5’ end, we demonstrate rescue of the integration defect of double-deficient plants by using T-DNAs that are capable of forming telomeres upon 3’ capture. Our study provides a mechanistic model for how Agrobacterium exploits the plant’s own DNA repair machineries to transform them.


Life ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1342
Author(s):  
Michael Tellier

SETMAR is a protein lysine methyltransferase that is involved in several DNA processes, including DNA repair via the non-homologous end joining (NHEJ) pathway, regulation of gene expression, illegitimate DNA integration, and DNA decatenation. However, SETMAR is an atypical protein lysine methyltransferase since in anthropoid primates, the SET domain is fused to an inactive DNA transposase. The presence of the DNA transposase domain confers to SETMAR a DNA binding activity towards the remnants of its transposable element, which has resulted in the emergence of a gene regulatory function. Both the SET and the DNA transposase domains are involved in the different cellular roles of SETMAR, indicating the presence of novel and specific functions in anthropoid primates. In addition, SETMAR is dysregulated in different types of cancer, indicating a potential pathological role. While some light has been shed on SETMAR functions, more research and new tools are needed to better understand the cellular activities of SETMAR and to investigate the therapeutic potential of SETMAR.


DNA Repair ◽  
2021 ◽  
Vol 108 ◽  
pp. 103217
Author(s):  
Bo-Ruei Chen ◽  
Yinan Wang ◽  
Zih-Jie Shen ◽  
Amelia Bennett ◽  
Issa Hindi ◽  
...  

Author(s):  
Xikui Sun ◽  
Jingning Bai ◽  
Jiejie Xu ◽  
Xiaoli Xi ◽  
Mingyu Gu ◽  
...  

Alternative end joining (A-EJ) catalyzes substantial level of antibody class switch recombination (CSR) in B cells deficient for classical non-homologous end joining, featuring increased switch (S) region DSB resection and junctional microhomology (MH). While resection has been suggested to initiate A-EJ in model DSB repair systems using engineered endonucleases, the contribution of resection factors to A-EJ-mediated CSR remains unclear. In this study, we systematically dissected the requirement for individual DSB resection factors in A-EJ-mediated class switching with a cell-based assay system and high-throughput sequencing. We show that while CtIP and Mre11 both are mildly required for CSR in WT cells, they play more critical roles in mediating A-EJ CSR, which depend on the exonuclease activity of Mre11. While DNA2 and the helicase/HRDC domain of BLM are required for A-EJ by mediating long S region DSB resection, in contrast, Exo1’s resection-related function does not play any obvious roles for class switching in either c-NHEJ or A-EJ cells, or mediated in an AID-independent manner by joining of Cas9 breaks. Furthermore, ATM and its kinase activity functions at least in part independent of CtIP/Mre11 to mediate A-EJ switching in Lig4-deficient cells. In stark contrast to Lig4 deficiency, 53BP1-deficient cells do not depend on ATM/Mre11/CtIP for residual joining. We discuss the roles for each resection factor in A-EJ-mediated CSR and suggest that the extent of requirements for resection is context dependent.


Sign in / Sign up

Export Citation Format

Share Document