scholarly journals USO E COBERTURA DO SOLO UTILIZANDO A PLATAFORMA GOOGLE EARTH ENGINE (GEE): ESTUDO DE CASO EM UMA UNIDADE DE CONSERVAÇÃO / LAND USE AND LAND COVER USING THE GOOGLE EARTH ENGINE PLATFORM (GEE): CASE STUDY IN A CONSERVATION UNIT

2021 ◽  
Vol 7 (2) ◽  
pp. 15280-15300
Author(s):  
Wesley dos Santos Carvalho ◽  
Fernando Jorge Corrêa Magalhães Filho ◽  
Thayene Lima dos Santos
2021 ◽  
pp. 101474
Author(s):  
Ritika Prasai ◽  
T. Wayne Schwertner ◽  
Kumar Mainali ◽  
Heather Mathewson ◽  
Hemanta Kafley ◽  
...  

Land ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 173
Author(s):  
Changjun Gu ◽  
Yili Zhang ◽  
Linshan Liu ◽  
Lanhui Li ◽  
Shicheng Li ◽  
...  

Land use and land cover (LULC) changes are regarded as one of the key drivers of ecosystem services degradation, especially in mountain regions where they may provide various ecosystem services to local livelihoods and surrounding areas. Additionally, ecosystems and habitats extend across political boundaries, causing more difficulties for ecosystem conservation. LULC in the Kailash Sacred Landscape (KSL) has undergone obvious changes over the past four decades; however, the spatiotemporal changes of the LULC across the whole of the KSL are still unclear, as well as the effects of LULC changes on ecosystem service values (ESVs). Thus, in this study we analyzed LULC changes across the whole of the KSL between 2000 and 2015 using Google Earth Engine (GEE) and quantified their impacts on ESVs. The greatest loss in LULC was found in forest cover, which decreased from 5443.20 km2 in 2000 to 5003.37 km2 in 2015 and which mainly occurred in KSL-Nepal. Meanwhile, the largest growth was observed in grassland (increased by 548.46 km2), followed by cropland (increased by 346.90 km2), both of which mainly occurred in KSL-Nepal. Further analysis showed that the expansions of cropland were the major drivers of the forest cover change in the KSL. Furthermore, the conversion of cropland to shrub land indicated that farmland abandonment existed in the KSL during the study period. The observed forest degradation directly influenced the ESV changes in the KSL. The total ESVs in the KSL decreased from 36.53 × 108 USD y−1 in 2000 to 35.35 × 108 USD y−1 in 2015. Meanwhile, the ESVs of the forestry areas decreased by 1.34 × 108 USD y−1. This shows that the decrease of ESVs in forestry was the primary cause to the loss of total ESVs and also of the high elasticity. Our findings show that even small changes to the LULC, especially in forestry areas, are noteworthy as they could induce a strong ESV response.


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2493 ◽  
Author(s):  
Meena Kumari Kolli ◽  
Christian Opp ◽  
Daniel Karthe ◽  
Michael Groll

India’s largest freshwater ecosystem of the Kolleru Lake has experienced severe threats by land-use changes, including the construction of illegal fishponds around the lake area over the past five decades. Despite efforts to protect and restore the lake and its riparian zones, environmental pressures have increased over time. The present study provides a synthesis of human activities through major land-use changes around Kolleru Lake both before and after restoration measures. For this purpose, archives of all Landsat imageries from the last three decades were used to detect land cover changes. Using the Google Earth Engine cloud platform, three different land-use scenarios were classified for the year before restoration (1999), for 2008 immediately after the restoration, and for 2018, i.e., the current situation of the lake one decade afterward. Additionally, the NDVI (Normalized Difference Vegetation Index) and NDWI (Normalized Difference Water Index) indices were used to identify land cover dynamics. The results show that the restoration was successful; consequently, after a decade, the lake was transformed into the previous state of restoration (i.e., 1999 situation). In 1999, 29.7% of the Kolleru Lake ecosystem was occupied by fishponds, and, after a decade of sustainable restoration, 27.7% of the area was fishponds, almost reaching the extent of the 1999 situation. On the one hand, aquaculture is one of the most promising sources of income, but there is also limited awareness of its negative environmental impacts among local residents. On the other hand, political commitment to protect the lake is weak, and integrated approaches considering all stakeholders are lacking. Nevertheless, alterations of land and water use, increasing nutrient concentrations, and sediment inputs from the lake basin have reached a level at which they threaten the biodiversity and functionality of India’s largest wetland ecosystem to the degree that immediate action is necessary to prevent irreversible degradation.


Ever since the advent of modern geo information systems, tracking environmental changes due to natural and/or manmade causes with the aid of remote sensing applications has been an indispensable tool in numerous fields of geography, most of the earth science disciplines, defence, intelligence, commerce, economics and administrative planning. One among these applications is the construction of land use and land cover maps through image classification process. Land Use / Land Cover (LULC) information is a crucial input in designing efficient strategies for managing natural resources and monitoring environmental changes from time to time. The present study aims to know the extent of land cover and its usage in Davangere region of Karnataka, India. In this study, satellite image of Davangere during October-November 2018 was used for LULC supervised classification with the help of remote sensing tools like QGIS and Google Earth Engine. Six LULC classes were decided to locate on the map and the accuracy assessment was done using theoretical error matrix and Kappa coefficient. The key findings include LULC under Water bodies (8%), Built up Area (15.1%), Vegetation (9%), Horticulture (20.8%), Agriculture (39.3%) and Others (7%) with overall accuracy of 94.8% and Kappa coefficient of 0.866 indicating almost accurate goodness of classification


Author(s):  
Crismeire Isbaex ◽  
Ana Margarida Coelho

Mapping land-cover/land-use (LCLU) and estimating forest biomass using satellite images is a challenge given the diversity of sensors available and the heterogeneity of forests. Copernicus program served by the Sentinel satellites family and the Google Earth Engine (GEE) platform, both with free and open services accessible to its users, present a good approach for mapping vegetation and estimate forest biomass on a global, regional, or local scale, periodically and in a repeated way. The Sentinel-2 (S2) systematically acquires optical imagery and provides global monitoring data with high spatial resolution (10–60 m) images. Given the novelty of information on the use of S2 data, this chapter presents a review on LCLU maps and forest above-ground biomass (AGB) estimates, in addition to exploring the efficiency of using the GEE platform. The Sentinel data have great potential for studies on LCLU classification and forest biomass estimates. The GEE platform is a promising tool for executing complex workflows of satellite data processing.


Sign in / Sign up

Export Citation Format

Share Document