99mTc-prulifloxacin in artificially infected animals

2011 ◽  
Vol 50 (03) ◽  
pp. 134-140 ◽  
Author(s):  
A. U. Khan ◽  
M. R. Khan ◽  
S. Q. Shah

SummaryAim: The radiosynthesis of 99mTc-Prulifloxacin (99mTc-PRN) was assessed in terms of stability, binding with Staphylococcus aureus (S. aureus), biodistribution in rats (RT) and scintigraphic profile in rabbits (RB). Animals, material, methods: 99mTc-PRN was synthesized by mixing 25 μg of stannous fluoride (SnF2) with 18.5 MB of sodium pertechnetate. Thereafter, 0.5 mg of the prufloxacin (PRN) was added to the reaction mixture and the pH was set at 5.1 with 0.01 mol/l HCl. The reaction mixture was incubated at room temperature. The same process was repeated by increasing the concentration of the stannous fluoride from 25 to 250 μg, sodium pertechnetate from 18,5 to 185 MBq and the PRN from 0.5 to 5 mg. The radiochemical stability of the 99mTc-PRN was investigated in higher concentration of the cystein. In-vitro binding investigation was performed using living and heat killed S. aureus to verify specificity of the 99mTc-PRN. Biodistribution was evaluated in artificially infected rats and scintigraphic precision in rabbits at different interval. Results: The 99mTc-RPN prepared by mixing 2 mg of PRN, 74 MBq sodium pertechnetate, 100 μg stannous fluoride at pH 5.4, appeared to be more than 90% stable with a maximum radiochemical yield of 98.15 ± 0.25% at 30 min. The 99mTc-PRN showed higher stability in serum and satisfactory in-vitro binding to living as compared to heat killed S. aureus. 14.25 ± 0.15% of the injected dose was accumulated in the infected muscle of the model RT. Infected to normal muscle ratio was 5.12 and inflamed to normal muscle was 1.2. The biodistribution was validated by the scintigraphic localization of infection in rabbits. Conclusion: This investigation of 99mTc-PRN confirmed its momentous radiochemical immovability in saline, serum, preferential in-vitro binding to living bacteria, higher uptake in the infected muscle of model RT and precise localization in the infected muscle of model RB.

2019 ◽  
Author(s):  
Filip Fratev ◽  
Denisse A. Gutierrez ◽  
Renato J. Aguilera ◽  
suman sirimulla

AKT1 is emerging as a useful target for treating cancer. Herein, we discovered a new set of ligands that inhibit the AKT1, as shown by in vitro binding and cell line studies, using a newly designed virtual screening protocol that combines structure-based pharmacophore and docking screens. Taking together with the biological data, the combination of structure based pharamcophore and docking methods demonstrated reasonable success rate in identifying new inhibitors (60-70%) proving the success of aforementioned approach. A detail analysis of the ligand-protein interactions was performed explaining observed activities.<br>


2004 ◽  
Vol 385 (1) ◽  
pp. 309-317 ◽  
Author(s):  
Zhefeng ZHAO ◽  
Joanna GRUSZCZYNSKA-BIEGALA ◽  
Anna ZOLKIEWSKA

The extracellular domain of integrin α7 is ADP-ribosylated by an arginine-specific ecto-ADP-ribosyltransferase after adding exogenous NAD+ to intact C2C12 skeletal muscle cells. The effect of ADP-ribosylation on the structure or function of integrin α7β1 has not been explored. In the present study, we show that ADP-ribosylation of integrin α7 takes place exclusively in differentiated myotubes and that this post-translational modification modulates the affinity of α7β1 dimer for its ligand, laminin. ADP-ribosylation in the 37-kDa ‘stalk’ region of α7 that takes place at micromolar NAD+ concentrations increases the binding of the α7β1 dimer to laminin. Increased in vitro binding of integrin α7β1 to laminin after ADP-ribosylation of the 37-kDa fragment of α7 requires the presence of Mn2+ and it is not observed in the presence of Mg2+. In contrast, ADP-ribosylation of the 63-kDa N-terminal region comprising the ligand-binding site of α7 that occurs at approx. 100 μM NAD+ inhibits the binding of integrin α7β1 to laminin. Furthermore, incubation of C2C12 myotubes with NAD+ increases the expression of an epitope on integrin β1 subunit recognized by monoclonal antibody 9EG7. We discuss our results based on the current models of integrin activation. We also hypothesize that ADP-ribosylation may represent a mechanism of regulation of integrin α7β1 function in myofibres in vivo when the continuity of the membrane is compromised and NAD+ is available as a substrate for ecto-ADP-ribosylation.


2016 ◽  
Vol 12 ◽  
pp. P144-P144
Author(s):  
Zhizhen Zeng ◽  
Patricia J. Miller ◽  
Brett M. Connolly ◽  
Stacey S. O’Malley ◽  
Idriss Bennacef ◽  
...  

Life Sciences ◽  
1988 ◽  
Vol 42 (21) ◽  
pp. 2097-2104 ◽  
Author(s):  
Thomas Brücke ◽  
Yuan Feen Tsai ◽  
Catherine McLellan ◽  
Weerachai Singhanyom ◽  
Hank F. Kung ◽  
...  

Synapse ◽  
2005 ◽  
Vol 56 (2) ◽  
pp. 100-104 ◽  
Author(s):  
Subroto Ghose ◽  
Masahiro Fujita ◽  
Paul Morrison ◽  
George Uhl ◽  
Dennis L. Murphy ◽  
...  

1984 ◽  
Vol 9 (Supplement 1) ◽  
pp. 98-99 ◽  
Author(s):  
Leslie M. Shaw ◽  
Roy Altman ◽  
Bernard C. Thompson ◽  
Leona Fields

Sign in / Sign up

Export Citation Format

Share Document