scholarly journals Biological Parts for Plant Biodesign to Enhance Land-Based Carbon Dioxide Removal

2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Xiaohan Yang ◽  
Degao Liu ◽  
Haiwei Lu ◽  
David J. Weston ◽  
Jin-Gui Chen ◽  
...  

A grand challenge facing society is climate change caused mainly by rising CO2 concentration in Earth’s atmosphere. Terrestrial plants are linchpins in global carbon cycling, with a unique capability of capturing CO2 via photosynthesis and translocating captured carbon to stems, roots, and soils for long-term storage. However, many researchers postulate that existing land plants cannot meet the ambitious requirement for CO2 removal to mitigate climate change in the future due to low photosynthetic efficiency, limited carbon allocation for long-term storage, and low suitability for the bioeconomy. To address these limitations, there is an urgent need for genetic improvement of existing plants or construction of novel plant systems through biosystems design (or biodesign). Here, we summarize validated biological parts (e.g., protein-encoding genes and noncoding RNAs) for biological engineering of carbon dioxide removal (CDR) traits in terrestrial plants to accelerate land-based decarbonization in bioenergy plantations and agricultural settings and promote a vibrant bioeconomy. Specifically, we first summarize the framework of plant-based CDR (e.g., CO2 capture, translocation, storage, and conversion to value-added products). Then, we highlight some representative biological parts, with experimental evidence, in this framework. Finally, we discuss challenges and strategies for the identification and curation of biological parts for CDR engineering in plants.

2012 ◽  
Author(s):  
Andrii Erich Torn ◽  
Farshid Torabi ◽  
Koorosh Asghari ◽  
Mehdi Mohammadpoor

2007 ◽  
Vol 47 (12) ◽  
pp. 1480 ◽  
Author(s):  
M. J. Szczerbanik ◽  
K. J. Scott ◽  
J. E. Paton ◽  
D. J. Best

The ‘Nijisseiki’ cultivar of Japanese pears (Pyrus pyrifolia) is also known as nashi in Australia. Nashi were exposed to levels of <0.005, 0.01, 0.1 and 1.0 µL/L of ethylene in air during 26 weeks storage at 0°C. Levels of ethylene as low as 0.01 µL/L increased chlorophyll loss and visual green colour. Increasing ethylene levels also increased softening and internal browning, although flesh spot decay was reduced in the presence of ethylene. While it would be worthwhile to remove ethylene during long-term storage of ‘Nijisseiki’ in air, another alternative, adding 2% carbon dioxide to the atmosphere, is suggested as a possible low cost means to overcome the ripening effect of ethylene.


HortScience ◽  
1994 ◽  
Vol 29 (4) ◽  
pp. 299-301 ◽  
Author(s):  
Stephen R. Drake

`Anjou' pears (Pyrus communis L.) were placed in controlled-atmosphere (CA) storage immediately after harvest (<24 hours) or after a 10-day delay in refrigerated storage, and held there for 9 months at 1C. Oxygen in all atmospheres was 1.5% and CO2 was at either 1% or 3%. Atmospheres in the flow-through system were computer-controlled at ±0.1%. After removal from CA storage, pears were evaluated immediately and after ripening at 21C for 8 days. Pears stored in 3% CO2 were firmer, greener, and displayed less scald, internal breakdown, and stem-end decay than pears stored in 1% CO2. In addition, no internal discoloration of `Anjou' pears was evident when held with 3% CO2. `Anjou' pears held in 3%. CO2 retained the ability to ripen after long-term storage. A 10-day delay in atmosphere establishment had little or no influence on the long-term keeping quality or ripening ability of `Anjou' pears.


MRS Bulletin ◽  
2008 ◽  
Vol 33 (4) ◽  
pp. 303-305 ◽  
Author(s):  
Sally M. Benson ◽  
Franklin M. Orr

Reducing CO2 emissions from the use of fossil fuel is the primary purpose of carbon dioxide capture and storage (CCS). Two basic approaches to CCS are available.1,2 In one approach, CO2 is captured directly from the industrial source, concentrated into a nearly pure form, and then pumped deep underground for long-term storage (see Figure 1). As an alternative to storage in underground geological formations, it has also been suggested that CO2 could be stored in the ocean. This could be done either by dissolving it in the mid-depth ocean (1–3 km) or by forming pools of CO2 on the sea bottom where the ocean is deeper than 3 km and, consequently, CO2 is denser than seawater. The second approach to CCS captures CO2directly from the atmosphere by enhancing natural biological processes that sequester CO2 in plants, soils, and marine sediments. All of these options for CCS have been investigated over the past decade, their potential to mitigate CO2 emissions has been evaluated,1 and several summaries are available.1,3,4


1993 ◽  
Vol 19 (5) ◽  
pp. 914-918 ◽  
Author(s):  
Masaki Iijima ◽  
Kazuitsu Ito ◽  
Hirotoshi Horizoe ◽  
Yoshikazu Noguchi ◽  
Yoshiyuki Tazaki ◽  
...  

2021 ◽  
Vol 3 ◽  
Author(s):  
Alexandra Buylova ◽  
Mathias Fridahl ◽  
Naghmeh Nasiritousi ◽  
Gunilla Reischl

Carbon dioxide removal (CDR) increasingly features in climate scenarios that hold global warming well below 2°C by 2100. Given the continuous gap between climate mitigation pledges and the emission pathways that are aligned with achieving the temperature goals of the Paris Agreement, we would expect countries to promote CDR in their long-term planning to achieve mid-century targets. Yet, countries may not consider it their responsibility to contribute to the global response to climate change using CDR. Thus, a study of the respective country's long-term climate plans is both timely and vital. Such a study could reveal the pledged collective ambition, the contribution of CDR to the pledged ambition, and how the envisaged role of CDR is described by the different countries. This paper explores the long-term low emission development strategies (LT-LEDS) of countries in order to map the role of CDR in addressing climate change. We also supplement our examination of strategies with the opinions of climate experts. Based on an inductive coding of the material and a literature review, the analytical focus of the analysis includes CDR targets and planning, types of CDR, barriers and opportunities to CDR implementation, as well as international cooperation. Our study of 25 national LT-LEDS submitted to the UN or to the EU, as well as 23 interviews with climate experts, shows that national plans for CDR vary substantially across countries and are generally lacking in detail. The findings also demonstrate that CDR is perceived to be necessary and desirable for achieving mid-century climate goals, but also reveal variation in the intended role of CDR. We use an interpretive approach to outline three possible visions of CDR in climate action: as a panacea, as a necessary fallback and as a chimera. We conclude by discussing what our findings of the envisaged roles of CDR in addressing climate change mean for climate governance. This research thereby contributes to the literature on governing CDR with new comprehensive insights into the long-term climate strategies of countries.


Sign in / Sign up

Export Citation Format

Share Document