scholarly journals Optimal Biclustering using Hybrid Swarm Intelligence for Web usage Mining

2019 ◽  
Vol 8 (2) ◽  
pp. 6392-6395

Web usage mining is used to analyze the user browsing behavior among the web pages which can be further utilized in other applications like recommender system, personalized web pages, providing insight for better business functionality. Since this type of mining does not only depends on the user or web pages, conventional clustering techniques may not suit very well for the analysis. Biclustering techniques are used to discover the subset in the form of submatrices as objects and attributes of objects are considered symmetrically. Finding optimal biclusters is a critical research issue. This research proposes a hybrid swarm intelligence-based method having Particle Swarm Optimization combined with Leader Clustering method along with Uniform Crossover operator. The experimental study shows that the proposed method performs well than traditional biclustering techniques in terms of evaluation metrics.


2008 ◽  
pp. 2004-2021
Author(s):  
Jenq-Foung Yao ◽  
Yongqiao Xiao

Web usage mining is to discover useful patterns in the web usage data, and the patterns provide useful information about the user’s browsing behavior. This chapter examines different types of web usage traversal patterns and the related techniques used to uncover them, including Association Rules, Sequential Patterns, Frequent Episodes, Maximal Frequent Forward Sequences, and Maximal Frequent Sequences. As a necessary step for pattern discovery, the preprocessing of the web logs is described. Some important issues, such as privacy, sessionization, are raised, and the possible solutions are also discussed.



Author(s):  
Ahmed El Azab ◽  
Mahmood A. Mahmood ◽  
Abd El-Aziz

Web usage mining techniques and applications across industries is still exploratory and, despite an increase in academic research, there are challenge of analyze web which quantitatively capture web users' common interests and characterize their underlying tasks. This chapter addresses the problem of how to support web usage mining techniques and applications across industries by combining language of web pages and algorithms that used in web data mining. Existing research in web usage mining techniques tend to focus on finding out how each techniques can apply in different industries fields. However, there is little evidence that researchers have approached the issue of web usage mining across industries. Consequently, the aim of this chapter is to provide an overview of how the web usage mining techniques and applications across industries can be supported.



Author(s):  
Paolo Giudici ◽  
Paola Cerchiello

The aim of this contribution is to show how the information, concerning the order in which the pages of a Web site are visited, can be profitably used to predict the visit behaviour at the site. Usually every click corresponds to the visualization of a Web page. Thus, a Web clickstream defines the sequence of the Web pages requested by a user. Such a sequence identifies a user session.



2004 ◽  
pp. 335-358 ◽  
Author(s):  
Yongqiao Xiao ◽  
Jenq-Foung (J.F.) Yao

Web usage mining is to discover useful patterns in the web usage data, and the patterns provide useful information about the user’s browsing behavior. This chapter examines different types of web usage traversal patterns and the related techniques used to uncover them, including Association Rules, Sequential Patterns, Frequent Episodes, Maximal Frequent Forward Sequences, and Maximal Frequent Sequences. As a necessary step for pattern discovery, the preprocessing of the web logs is described. Some important issues, such as privacy, sessionization, are raised, and the possible solutions are also discussed.



Author(s):  
R. Rathipriya ◽  
K. Thangavel

This chapter focuses on recommender systems based on the coherent user's browsing patterns. Biclustering approach is used to discover the aggregate usage profiles from the preprocessed Web data. A combination of Discrete Artificial Bees Colony Optimization and Simulated Annealing technique is used for optimizing the aggregate usage profiles from the preprocessed clickstream data. Web page recommendation process is structured in to two components performed online and offline with respect to Web server activity. Offline component builds the usage profiles or usage models by analyzing historical data, such as server access log file or Web logs from the server using hybrid biclustering approach. Recommendation process is the online component. Current user's session is used in the online component for capturing the user's interest so as to recommend pages to the user for next navigation. The experiment was conducted on the benchmark clickstream data (i.e. MSNBC dataset and MSWEB dataset from UCI repository). The results signify the improved prediction accuracy of recommendations using biclustering approach.



2011 ◽  
Vol 63-64 ◽  
pp. 863-867 ◽  
Author(s):  
Bin Li ◽  
Jin Yang ◽  
Cai Ming Liu ◽  
Jian Dong Zhang ◽  
Yan Zhang

Clustering analysis is an important method to research the Web user’s browsing behavior and identify the potential customers on Web usage mining. The traditional user clustering algorithms are not quite accurate. In this paper, we give two improved user clustering algorithms, which are based on the associated matrix of the user’s hits in the process of browsing website. To this matrix, an improved Hamming distance matrix is generated by defining the minimum norm or the generalized relative Hamming distance between any two vectors. Then, similar user clustering are obtained by setting the threshold value. At the last step of our algorithm, the clustering results are confirmed by defining the clustering’s Similar Index and setting sub-algorithm. Finally, the testing examples show that the new algorithms are more accurate than the old one, and the real log data presents that the improved algorithms are practical.



2013 ◽  
Vol 10 (9) ◽  
pp. 2010-2020
Author(s):  
Ibrahim M. Hezam ◽  
Osama Abdel Raouf ◽  
Mohey M. Hadhoud

This paper proposes a new hybrid swarm intelligence algorithm that encompasses the feature of three major swarm algorithms. It combines the fast convergence of the Cuckoo Search (CS), the dynamic root change of the Firefly Algorithm (FA), and the continuous position update of the Particle Swarm Optimization (PSO). The Compound Swarm Intelligence Algorithm (CSIA) will be used to solve a set of standard benchmark functions. The research study compares the performance of CSIA with that of CS, FA, and PSO, using the same set of benchmark functions. The comparison aims to test if the performance of CSIA is Competitive to that of the CS, FA, and PSO algorithms denoting the solution results of the benchmark functions.



2011 ◽  
Vol 219-220 ◽  
pp. 887-891
Author(s):  
Jiang Zhong ◽  
Yi Feng Cheng ◽  
Shi Tao Deng

Web usage mining technique is widely used for Web recommendation, which customizes Web content to user-preferred style. Traditional techniques of Web usage mining can only discover usage pattern explicitly. In order to employ the users’ feature and web pages’ attributes to get more accuracy recommendation, we propose a unified collaborative filtering model for web recommendation which combined the latent and external features of users and web page through back propagation neural networks. In the algorithm, we employ Probabilistic Latent Semantic Analysis (PLSA) method to get latent features. The main advantages of this technique over standard memory-based methods are the higher accuracy, constant time prediction, and an explicit and compact model representation. The preliminary experimental evaluation shows that substantial improvements in accuracy over existing methods can be obtained.



Sign in / Sign up

Export Citation Format

Share Document