scholarly journals Denoising of Medical Ultrasound Images using Wavelet Transform with Bilateral Filter

2019 ◽  
Vol 8 (4) ◽  
pp. 8113-8116

Medical image degradation contains a significant impact on image quality and therefore affects the human interpretation and also the accuracy of computer assisted diagnostics techniques, unfortunately ultrasound images are principally degraded by an intrinsic noise known as speckle noise. Therefore, de- speckle filtering may be pre-processing step in medical ultrasound images. During this paper we propose a new image de-noising technique is the combination of bilateral filter and wavelet transform. The main contribution of this paper is within the use of a new neighborhood relationship to develop a new multi-scale bilateral filter. Experimental outcomes validate the usefulness and also the correctness of the proposed filter in edge preservation and speckle noise reduction for medical ultrasound images.

Author(s):  
Sudeep P. V. ◽  
Palanisamy P. ◽  
Jeny Rajan

The B-mode ultrasound images are corrupted due to the presence of speckle noise. Hence, the speckle removal in the ultrasound images is essential for proper clinical examination and quantitative assessments. The speckle pattern varies with several imaging parameters as well as the anatomical structure in the image. It is hard to avoid speckle by performing averaging and low noise system designs. An excessive speckle reduction diminishes the visibility of small anatomical structures and thereby makes the image understanding complicated. This chapter is intended to encapsulate various techniques for reducing speckle in medical ultrasound images and improving the image quality for visual inspection and/or computer-assisted diagnosis of ultrasound images. In addition, the chapter surveys the papers published between 2015 and 2018 to highlight the latest trends in the despeckling of ultrasound images. The chapter also presents the performance comparison of a few popular algorithms to despeckle medical ultrasound images.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Zhuxiang Shen ◽  
Wei Li ◽  
Hui Han

To explore the utilization of the convolutional neural network (CNN) and wavelet transform in ultrasonic image denoising and the influence of the optimized wavelet threshold function (WTF) algorithm on image denoising, in this exploration, first, the imaging principle of ultrasound images is studied. Due to the limitation of the principle of ultrasound imaging, the inherent speckle noise will seriously affect the quality of ultrasound images. The denoising principle of the WTF based on the wavelet transform is analyzed. Based on the traditional threshold function algorithm, the optimized WTF algorithm is proposed and applied to the simulation experiment of ultrasound images. By comparing quantitatively and qualitatively with the traditional threshold function algorithm, the advantages of the optimized WTF algorithm are analyzed. The results suggest that the image is denoised by the optimized WTF. The mean square error (MSE), peak signal-to-noise ratio (PSNR), and structural similarity index measurement (SSIM) of the images are 20.796 dB, 34.294 dB, and 0.672 dB, respectively. The denoising effect is better than the traditional threshold function. It can denoise the image to the maximum extent without losing the image information. In addition, in this exploration, the optimized function is applied to the actual medical image processing, and the ultrasound images of arteries and kidneys are denoised separately. It is found that the quality of the denoised image is better than that of the original image, and the extraction of effective information is more accurate. In summary, the optimized WTF algorithm can not only remove a lot of noise but also obtain better visual effect. It has important value in assisting doctors in disease diagnosis, so it can be widely applied in clinics.


2017 ◽  
pp. 761-775
Author(s):  
A.S.C.S. Sastry ◽  
P.V.V. Kishore ◽  
Ch. Raghava Prasad ◽  
M.V.D. Prasad

Medical ultrasound imaging has revolutioned the diagnostics of human body in the last few decades. The major drawback of ultrasound medical images is speckle noise. Speckle noise in ultrasound images is because of multiple reflections of ultrasound waves from hard tissues. Speckle noise degrades the medical ultrasound images lessening the visible quality of the image. The aim of this paper is to improve the image quality of ultrasound medical images by applying block based hard and soft thresholding on wavelet coefficients. Medical ultrasound image transformation to wavelet domain uses debauchee's mother wavelet. Divide the approximate and detailed coefficients into uniform blocks of size 8×8, 16×16, 32×32 and 64×64. Hard and soft thresholding on these blocks of approximate and detailed coefficients reduces speckle noise. Inverse transformation to original spatial domain produces a noise reduced ultrasound image. Experiments on medical ultrasound images obtained from diagnostic centers in Vijayawada, India show good improvements to ultrasound images visually. Quality of improved images in measured using peak signal to noise ratio (PSNR), image quality index (IQI), structural similarity index (SSIM).


2020 ◽  
Vol 25 (6) ◽  
pp. 2367-2389
Author(s):  
Karamjeet Singh ◽  
Bhisham Sharma ◽  
Jaiteg Singh ◽  
Gautam Srivastava ◽  
Suchita Sharma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document