scholarly journals Enhancing the nonlinear optical response and nonlinear figure-of-merit for silicon nanowires by integrating 2D graphene oxide films

Author(s):  
David Moss

We experimentally demonstrate enhanced self-phase modulation in silicon nanowire waveguides integrated with layered graphene oxide films. We achieve spectral broadening of optical pulses in the GO-silicon waveguide with a broadening factor up to 2.96.

2020 ◽  
Author(s):  
David Moss

We experimentally demonstrate enhanced self-phase modulation in silicon nanowire waveguides integrated with layered graphene oxide films. We achieve spectral broadening of optical pulses in the GO-silicon waveguide with a broadening factor up to 2.96.


2020 ◽  
Author(s):  
David Moss

We experimentally demonstrate enhanced self-phase modulation in silicon nanowire waveguides integrated with layered graphene oxide films. We achieve spectral broadening of optical pulses in the GO-silicon waveguide with a broadening factor up to 2.96.


2021 ◽  
Author(s):  
Yuning Zhang ◽  
Jiayang Wu ◽  
Yang Qu ◽  
Linnan Jia ◽  
Baohua Jia ◽  
...  

Abstract The Kerr nonlinear optical performance of silicon nanowire waveguides integrated with 2D layered graphene oxide (GO) films is theoretically studied and optimized based on experimentally measured linear and nonlinear optical parameters of the GO films. The strong mode overlap between the silicon nanowires and highly nonlinear GO films yields a significantly enhanced Kerr nonlinearity for the hybrid waveguides. A detailed analysis for the influence of waveguide geometry and GO film thickness on the propagation loss, nonlinear parameter, and nonlinear figure of merit (FOM) is performed. The results show that the effective nonlinear parameter and nonlinear FOM can be increased by up to ~ 52 and ~ 79 times relative to bare silicon nanowires, respectively. Self-phase modulation (SPM)-induced spectral broadening of optical pulses is used as a benchmark to evaluate the nonlinear performance, examining the trade-off between enhancing Kerr nonlinearity and minimizing loss. By optimizing the device parameters to balance this, a high spectral broadening factor of 27.8 can be achieved ‒ more than 6 times that achieved in previous experiments. Finally, the influence of pulse chirp, material anisotropy, and the interplay between saturable absorption and SPM is also discussed, together with the comparison between the spectral broadening after going through GO-coated and graphene-coated silicon waveguides. These results provide useful guidance for optimizing the Kerr nonlinear optical performance of silicon waveguides integrated with 2D layered GO films.


2020 ◽  
Vol 12 (29) ◽  
pp. 33094-33103 ◽  
Author(s):  
Yuning Zhang ◽  
Jiayang Wu ◽  
Yunyi Yang ◽  
Yang Qu ◽  
Linnan Jia ◽  
...  

2020 ◽  
Author(s):  
David Moss

<p>The Kerr nonlinear optical performance of silicon nanowire waveguides integrated with 2D layered graphene oxide (GO) films is theoretically studied and optimized based on experimentally measured linear and nonlinear optical parameters of the GO films. The strong mode overlap between the silicon nanowires and highly nonlinear GO films yields a significantly enhanced Kerr nonlinearity for the hybrid waveguides. A detailed analysis for the influence of waveguide geometry and GO film thickness on the propagation loss, nonlinear parameter, and nonlinear figure of merit (FOM) is performed. The results show that the effective nonlinear parameter and nonlinear FOM can be increased by up to ≈52 and ≈79 times relative to bare silicon nanowires, respectively. Self-phase modulation (SPM)-induced spectral broadening of optical pulses is used as a benchmark to evaluate the nonlinear performance, examining the trade-off between enhancing Kerr nonlinearity and minimizing loss. By optimizing the device parameters to balance this, a high spectral broadening factor of 27.6 can be achieved ‒ more than 6 times that achieved in previous experiments. Finally, the influence of pulse chirp, material anisotropy, and the interplay between saturable absorption and SPM is also discussed. These results provide useful guidance for optimizing the Kerr nonlinear optical performance of silicon waveguides integrated with 2D layered GO films.</p><br>


2021 ◽  
Author(s):  
David Moss

The Kerr nonlinear optical performance of silicon nanowire waveguides integrated with 2D layered graphene oxide (GO) films is theoretically studied and optimized based on experimentally measured linear and nonlinear optical parameters of the GO films. The strong mode overlap between the silicon nanowires and highly nonlinear GO films yields a significantly enhanced Kerr nonlinearity for the hybrid waveguides. A detailed analysis for the influence of waveguide geometry and GO film thickness on the propagation loss, nonlinear parameter, and nonlinear figure of merit (FOM) is performed. The results show that the effective nonlinear parameter and nonlinear FOM can be increased by up to ~52 and ~79 times relative to bare silicon nanowires, respectively. Self-phase modulation (SPM)-induced spectral broadening of optical pulses is used as a benchmark to evaluate the nonlinear performance, examining the trade-off between enhancing Kerr nonlinearity and minimizing loss. By optimizing the device parameters to balance this, a high spectral broadening factor of 27.8 can be achieved ‒ more than 6 times that achieved in previous experiments. Finally, the influence of pulse chirp, material anisotropy, and the interplay between saturable absorption and SPM is also discussed, together with the comparison between the spectral broadening after going through GO-coated and graphene-coated silicon waveguides. These results provide useful guidance for optimizing the Kerr nonlinear optical performance of silicon waveguides integrated with 2D layered GO films.


2020 ◽  
Author(s):  
David Moss

Two-dimensional layered graphene oxide (GO) films are integrated with silicon-on-insulator nanowires to experimentally demonstrate enhanced self-phase modulation, <a>achieving high broadening factor of up to 4.14 for a device patterned with 0.4-mm-long, 10 layers of GO. </a>


2020 ◽  
Author(s):  
David Moss

<p>The Kerr nonlinear optical performance of silicon nanowire waveguides integrated with 2D layered graphene oxide (GO) films is theoretically studied and optimized based on experimentally measured linear and nonlinear optical parameters of the GO films. The strong mode overlap between the silicon nanowires and highly nonlinear GO films yields a significantly enhanced Kerr nonlinearity for the hybrid waveguides. A detailed analysis for the influence of waveguide geometry and GO film thickness on the propagation loss, nonlinear parameter, and nonlinear figure of merit (FOM) is performed. The results show that the effective nonlinear parameter and nonlinear FOM can be increased by up to ≈52 and ≈79 times relative to bare silicon nanowires, respectively. Self-phase modulation (SPM)-induced spectral broadening of optical pulses is used as a benchmark to evaluate the nonlinear performance, examining the trade-off between enhancing Kerr nonlinearity and minimizing loss. By optimizing the device parameters to balance this, a high spectral broadening factor of 27.6 can be achieved ‒ more than 6 times that achieved in previous experiments. Finally, the influence of pulse chirp, material anisotropy, and the interplay between saturable absorption and SPM is also discussed. These results provide useful guidance for optimizing the Kerr nonlinear optical performance of silicon waveguides integrated with 2D layered GO films.</p><br>


2020 ◽  
Author(s):  
David Moss

Two-dimensional layered graphene oxide (GO) films are integrated with silicon-on-insulator nanowires to experimentally demonstrate enhanced self-phase modulation, <a>achieving high broadening factor of up to 4.14 for a device patterned with 0.4-mm-long, 10 layers of GO. </a>


Sign in / Sign up

Export Citation Format

Share Document