Regression Analysis of Predictions and Forecasts of Cloud Data Centre KPIs Using the Boosted Decision Tree Algorithm

Author(s):  
Thomas Weripuo Gyeera

<div>The National Institute of Standards and Technology defines the fundamental characteristics of cloud computing as: on-demand computing, offered via the network, using pooled resources, with rapid elastic scaling and metered charging. The rapid dynamic allocation and release of resources on demand to meet heterogeneous computing needs is particularly challenging for data centres, which process a huge amount of data characterised by its high volume, velocity, variety and veracity (4Vs model). Data centres seek to regulate this by monitoring and adaptation, typically reacting to service failures after the fact. We present a real cloud test bed with the capabilities of proactively monitoring and gathering cloud resource information for making predictions and forecasts. This contrasts with the state-of-the-art reactive monitoring of cloud data centres. We argue that the behavioural patterns and Key Performance Indicators (KPIs) characterizing virtualized servers, networks, and database applications can best be studied and analysed with predictive models. Specifically, we applied the Boosted Decision Tree machine learning algorithm in making future predictions on the KPIs of a cloud server and virtual infrastructure network, yielding an R-Square of 0.9991 at a 0.2 learning rate. This predictive framework is beneficial for making short- and long-term predictions for cloud resources.</div>

2021 ◽  
Author(s):  
Thomas Weripuo Gyeera

<div>The National Institute of Standards and Technology defines the fundamental characteristics of cloud computing as: on-demand computing, offered via the network, using pooled resources, with rapid elastic scaling and metered charging. The rapid dynamic allocation and release of resources on demand to meet heterogeneous computing needs is particularly challenging for data centres, which process a huge amount of data characterised by its high volume, velocity, variety and veracity (4Vs model). Data centres seek to regulate this by monitoring and adaptation, typically reacting to service failures after the fact. We present a real cloud test bed with the capabilities of proactively monitoring and gathering cloud resource information for making predictions and forecasts. This contrasts with the state-of-the-art reactive monitoring of cloud data centres. We argue that the behavioural patterns and Key Performance Indicators (KPIs) characterizing virtualized servers, networks, and database applications can best be studied and analysed with predictive models. Specifically, we applied the Boosted Decision Tree machine learning algorithm in making future predictions on the KPIs of a cloud server and virtual infrastructure network, yielding an R-Square of 0.9991 at a 0.2 learning rate. This predictive framework is beneficial for making short- and long-term predictions for cloud resources.</div>


2021 ◽  
Author(s):  
Thomas Weripuo Gyeera ◽  
Anthony J.H. Simons ◽  
Mike Stannett

<div>The National Institute of Standards and Technology defines the fundamental characteristics of cloud computing as: on-demand computing, offered via the network, using pooled resources, with rapid elastic scaling and metered charging. The rapid dynamic allocation and release of resources on demand to meet heterogeneous computing needs is particularly challenging for data centres, which process a huge amount of data characterised by its high volume, velocity, variety and veracity (4Vs model). Data centres seek to regulate this by monitoring and adaptation, typically reacting to service failures after the fact. We present a real cloud test bed with the capabilities of proactively monitoring and gathering cloud resource information for making predictions and forecasts. This contrasts with the state-of-the-art reactive monitoring of cloud data centres. We argue that the behavioural patterns and Key Performance Indicators (KPIs) characterizing virtualized servers, networks, and database applications can best be studied and analysed with predictive models. Specifically, we applied the Boosted Decision Tree machine learning algorithm in making future predictions on the KPIs of a cloud server and virtual infrastructure network, yielding an R-Square of 0.9991 at a 0.2 learning rate. This predictive framework is beneficial for making short- and long-term predictions for cloud resources.</div>


2021 ◽  
Author(s):  
Thomas Weripuo Gyeera ◽  
Anthony J.H. Simons ◽  
Mike Stannett

<div>The National Institute of Standards and Technology defines the fundamental characteristics of cloud computing as: on-demand computing, offered via the network, using pooled resources, with rapid elastic scaling and metered charging. The rapid dynamic allocation and release of resources on demand to meet heterogeneous computing needs is particularly challenging for data centres, which process a huge amount of data characterised by its high volume, velocity, variety and veracity (4Vs model). Data centres seek to regulate this by monitoring and adaptation, typically reacting to service failures after the fact. We present a real cloud test bed with the capabilities of proactively monitoring and gathering cloud resource information for making predictions and forecasts. This contrasts with the state-of-the-art reactive monitoring of cloud data centres. We argue that the behavioural patterns and Key Performance Indicators (KPIs) characterizing virtualized servers, networks, and database applications can best be studied and analysed with predictive models. Specifically, we applied the Boosted Decision Tree machine learning algorithm in making future predictions on the KPIs of a cloud server and virtual infrastructure network, yielding an R-Square of 0.9991 at a 0.2 learning rate. This predictive framework is beneficial for making short- and long-term predictions for cloud resources.</div>


2021 ◽  
Author(s):  
Thomas Weripuo Gyeera ◽  
Anthony J.H. Simons ◽  
Mike Stannett

Cloud computing depends on the dynamic allocation and release of resources, on demand, to meet heterogeneous computing needs. This is challenging for cloud data centers, which process huge amounts of data characterised by its high volume, velocity, variety and veracity (4Vs model). Managing such a workload is increasingly difficult using state-of-the-art methods for monitoring and adaptation, which typically react to service failures after the fact. To address this, we seek to develop proactive methods for predicting future resource exhaustion and cloud service failures. Our work uses a realistic test bed in the cloud, which is instrumented to monitor and analyze resource usage. In this paper, we employed the optimal Kalman filtering technique to build a predictive and analytic framework for cloud server KPIs, based on historical data. Our k-step-ahead predictions on historical data yielded a prediction accuracy of 95.59%. The information generated from the framework can best be used for optimal resources provisioning, admission control and cloud SLA management.


2021 ◽  
Author(s):  
Thomas Weripuo Gyeera ◽  
Anthony J.H. Simons ◽  
Mike Stannett

Cloud computing depends on the dynamic allocation and release of resources, on demand, to meet heterogeneous computing needs. This is challenging for cloud data centers, which process huge amounts of data characterised by its high volume, velocity, variety and veracity (4Vs model). Managing such a workload is increasingly difficult using state-of-the-art methods for monitoring and adaptation, which typically react to service failures after the fact. To address this, we seek to develop proactive methods for predicting future resource exhaustion and cloud service failures. Our work uses a realistic test bed in the cloud, which is instrumented to monitor and analyze resource usage. In this paper, we employed the optimal Kalman filtering technique to build a predictive and analytic framework for cloud server KPIs, based on historical data. Our k-step-ahead predictions on historical data yielded a prediction accuracy of 95.59%. The information generated from the framework can best be used for optimal resources provisioning, admission control and cloud SLA management.


2021 ◽  
Vol 129 ◽  
pp. 103815
Author(s):  
Zhou Wu ◽  
Yan Zeng ◽  
DongSheng Li ◽  
Jiepeng Liu ◽  
Liang Feng

Sign in / Sign up

Export Citation Format

Share Document