scholarly journals Application of Selected Numerical Methods to Model the Fractional-Order System Behavior of Nonlaminated Magnetic Actuators

Author(s):  
Martin Hecht ◽  
Robert Seifert ◽  
Wilfried Hofmann

The electromagnetic dynamics of nonlaminated magnetic actuators are highly influenced by eddy currents and minor perturbations like core saturation, hysteresis as well as fringing and leakage fluxes. In the literature, analytical high-fidelity models describing these phenomena are known, which lead to complex reluctance networks or transcendental system descriptions with fractional-order characteristics. Therefore, they are not suitable for a direct implementation within the actuator control. Previously, we provided appropriate analytical rational approximations that allow a digital real-time implementation of these models on a microcontroller. However, the inclusion of the minor perturbations, if possible, leads to impractical model orders requiring simplifications, which compromise the model accuracy. This article studies numerical methods to reduce high model orders or directly approximate the transcendental systems or empirical measurement data. The greater degree of freedom allows for a possible higher model accuracy with sufficiently low orders. We review and improve existing approaches like Levy's method and Vector Fitting and apply them to the frequency response of the underlying fractional-order system. Furthermore we propose an order reduction algorithm based on a pole-zero-cancellation with tracking error compensation. Using measurement data, a comparison shows that the numerical approaches match or excel our previously studied analytical approximation.

2021 ◽  
Author(s):  
Martin Hecht ◽  
Robert Seifert ◽  
Wilfried Hofmann

The electromagnetic dynamics of nonlaminated magnetic actuators are highly influenced by eddy currents and minor perturbations like core saturation, hysteresis as well as fringing and leakage fluxes. In the literature, analytical high-fidelity models describing these phenomena are known, which lead to complex reluctance networks or transcendental system descriptions with fractional-order characteristics. Therefore, they are not suitable for a direct implementation within the actuator control. Previously, we provided appropriate analytical rational approximations that allow a digital real-time implementation of these models on a microcontroller. However, the inclusion of the minor perturbations, if possible, leads to impractical model orders requiring simplifications, which compromise the model accuracy. This article studies numerical methods to reduce high model orders or directly approximate the transcendental systems or empirical measurement data. The greater degree of freedom allows for a possible higher model accuracy with sufficiently low orders. We review and improve existing approaches like Levy's method and Vector Fitting and apply them to the frequency response of the underlying fractional-order system. Furthermore we propose an order reduction algorithm based on a pole-zero-cancellation with tracking error compensation. Using measurement data, a comparison shows that the numerical approaches match or excel our previously studied analytical approximation.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Donato Cafagna ◽  
Giuseppe Grassi

A new fractional-order chaotic system with no equilibria is presented. The proposed system can be considered elegant in the sense given by Sprott (2010), since the corresponding system equations contain very few terms and the system parameters have a minimum of digits. The chaotic dynamics are analyzed using the predictor-corrector algorithm when the fractional-order of the derivative is 0.98. Finally, the presence of chaos is validated by applying different numerical methods.


2021 ◽  
Author(s):  
WANG Hongwei ◽  
ZHANG Qian ◽  
ZHA Qin ◽  
Mutalifu Ahemaide

Abstract Aiming at the modeling issues of fractional order Hammerstein system with scarce measurements, a novel multi-innovation hybrid identification algorithm is proposed to deal with them. Firstly, a multi-innovation estimation algorithm based on auxiliary model is presented to estimate the parameters of the nonlinear fractional order system, and a multi-innovation Levenberg-Marquardt algorithm are derived to confirm the fractional orders. Secondly, the convergence properties of the proposed algorithm are analyzed using the lemmas and theorems. Finally, in order to illustrate the effectiveness of the proposed algorithm, two fractional order nonlinear systems with scarce measurements are studied to prove the validity.


2020 ◽  
Vol 21 (4) ◽  
pp. 701-707
Author(s):  
Florin Rosu

A parallel algorithm is presented that approximates a solution for fractional-order systems. The algorithm isimplemented in CUDA, using the specific GPU capabilities. The numerical methods used are Adams-Bashforth-Moulton (ABM) predictor-corrector scheme and Diethelm’s numerical method. A comparison is done between these numerical methods that adapts the same algorithm for the approximation of the solution.


2015 ◽  
Vol 733 ◽  
pp. 939-942
Author(s):  
Xiao Jun Liu

In this paper, adaptive synchronization of a stochastic fractional-order system with unknown parameters is studied. Firstly, the stochastic system is reduced into the equivalent deterministic one with Laguerre approximation. Then, the synchronization for the system is realized by designing appropriate controllers and adaptive laws of the unknown parameters. Numerical simulations are carried out to demonstrate the effectiveness of the controllers and laws.


Sign in / Sign up

Export Citation Format

Share Document