scholarly journals Incremental Learning in Multiple Limb Positions for Electromyography-Based Gesture Recognition using Hyperdimensional Computing

Author(s):  
Andy Zhou ◽  
Rikky Muller ◽  
Jan Rabaey

<div>Prosthetic control for rehabilitation, among many other applications, can leverage in-sensor hand gesture recognition in which lightweight machine learning models for classifying electromyogram (EMG) signals are embedded on miniature, low-power devices. While research efforts have demonstrated high accuracy in controlled settings, these methods have yet to make a significant commercial or clinical impact due to the wide variety of scenarios and situational contexts that are faced during everyday use. Typical static models suffer from the effects of EMG signal variation caused by changing contexts in which they are deployed. Here, we propose an incremental learning algorithm using hyperdimensional (HD) computing that can efficiently learn gesture patterns performed in new limb positions, a context-change which normally significantly degrades classification accuracy. A prototype-based learning algorithm, HD computing enables memory- and computation-efficient incorporation of new training examples into the model, while preserving information about already learned contexts. We present various configurations of the incremental HD classifier, allowing system designers to trade classification performance for implementation efficiency as measured through memory footprint. Incremental learning experiments with data from 5 subjects show that HD computing can achieve similar accuracies as incrementally trained SVM and LDA classifiers while requiring a fraction of the memory allocation. </div>

2021 ◽  
Author(s):  
Andy Zhou ◽  
Rikky Muller ◽  
Jan Rabaey

<div>Prosthetic control for rehabilitation, among many other applications, can leverage in-sensor hand gesture recognition in which lightweight machine learning models for classifying electromyogram (EMG) signals are embedded on miniature, low-power devices. While research efforts have demonstrated high accuracy in controlled settings, these methods have yet to make a significant commercial or clinical impact due to the wide variety of scenarios and situational contexts that are faced during everyday use. Typical static models suffer from the effects of EMG signal variation caused by changing contexts in which they are deployed. Here, we propose an incremental learning algorithm using hyperdimensional (HD) computing that can efficiently learn gesture patterns performed in new limb positions, a context-change which normally significantly degrades classification accuracy. A prototype-based learning algorithm, HD computing enables memory- and computation-efficient incorporation of new training examples into the model, while preserving information about already learned contexts. We present various configurations of the incremental HD classifier, allowing system designers to trade classification performance for implementation efficiency as measured through memory footprint. Incremental learning experiments with data from 5 subjects show that HD computing can achieve similar accuracies as incrementally trained SVM and LDA classifiers while requiring a fraction of the memory allocation. </div>


Author(s):  
YIHAO ZHANG ◽  
JUNHAO WEN ◽  
FANGFANG TANG ◽  
ZHUO JIANG

Current existing representative works to semi-supervised incremental learning prefer to select unlabeled instances predicted with high confidence for model retraining. However, this strategy may degrade the classification performance rather than improve it, because relying on high confidence for data selection can lead to an erroneous estimate to the true distribution, especially when the confidence annotator is highly correlated with the confidence annotator. In this paper, a new semi-supervised incremental learning algorithm was proposed, which selected the high confidence unlabeled instances with symmetrical distribution from unlabeled data, it can reduce the bias in the estimation in some degree. In detail, expectation maximization algorithm was used to estimate the confidence of each instance, and Gaussian function was used to calculate the data distribution, then the selected unlabeled data was used for retraining model with classifier algorithm. The experimental results based on a large number of UCI data sets show that our algorithm can effectively exploit unlabeled data to enhance the learning performance.


Author(s):  
Xinyi Li ◽  
Liqiong Chang ◽  
Fangfang Song ◽  
Ju Wang ◽  
Xiaojiang Chen ◽  
...  

This paper focuses on a fundamental question in Wi-Fi-based gesture recognition: "Can we use the knowledge learned from some users to perform gesture recognition for others?". This problem is also known as cross-target recognition. It arises in many practical deployments of Wi-Fi-based gesture recognition where it is prohibitively expensive to collect training data from every single user. We present CrossGR, a low-cost cross-target gesture recognition system. As a departure from existing approaches, CrossGR does not require prior knowledge (such as who is currently performing a gesture) of the target user. Instead, CrossGR employs a deep neural network to extract user-agnostic but gesture-related Wi-Fi signal characteristics to perform gesture recognition. To provide sufficient training data to build an effective deep learning model, CrossGR employs a generative adversarial network to automatically generate many synthetic training data from a small set of real-world examples collected from a small number of users. Such a strategy allows CrossGR to minimize the user involvement and the associated cost in collecting training examples for building an accurate gesture recognition system. We evaluate CrossGR by applying it to perform gesture recognition across 10 users and 15 gestures. Experimental results show that CrossGR achieves an accuracy of over 82.6% (up to 99.75%). We demonstrate that CrossGR delivers comparable recognition accuracy, but uses an order of magnitude less training samples collected from the end-users when compared to state-of-the-art recognition systems.


2012 ◽  
Vol 3 (3) ◽  
pp. 179-188 ◽  
Author(s):  
Sevil Ahmed ◽  
Nikola Shakev ◽  
Andon Topalov ◽  
Kostadin Shiev ◽  
Okyay Kaynak

Sign in / Sign up

Export Citation Format

Share Document