2017 ◽  
Vol 87 ◽  
pp. 39-48 ◽  
Author(s):  
J. Groeneveld ◽  
B. Müller ◽  
C.M. Buchmann ◽  
G. Dressler ◽  
C. Guo ◽  
...  

2020 ◽  
Author(s):  
Calum Brown ◽  
Ian Holman ◽  
Mark Rounsevell

Abstract. Land use models operating at regional to global scales are almost exclusively based on the single paradigm of economic optimisation. Models based on different paradigms are known to produce very different results, but these are not always equivalent or attributable to particular assumptions. In this study, we compare two pan-European land use models that are based on the same integrated modelling framework and utilise the same climatic and socio-economic scenarios, but which adopt fundamentally different model paradigms. One of these is a constrained optimising economic-equilibrium model and the other is a stochastic agent-based model. We run both models for a range of scenario combinations and compare their projections of spatial and aggregate land use change and ecosystem service supply. We find that the agent-based model projects more multifunctional and heterogeneous landscapes in most scenarios, providing a wider range of ecosystem services at landscape scales, as agents make individual, time-dependent decisions that reflect economic and non-economic motivations. This tendency also results in food shortages under certain scenario conditions. The optimisation model, in contrast, maintains food supply through intensification of agricultural production in the most profitable areas, sometimes at the expense of active management in large, contiguous parts of Europe. We relate the principal differences observed to underlying model assumptions, and hypothesise that optimisation may be appropriate in scenarios that allow for coherent political and economic control of land systems, but not in scenarios where economic and other scenario conditions prevent the normal functioning of price signals and responses. In these circumstances, agent-based modelling allows explicit consideration of behavioural processes, but in doing so provides a highly flexible account of land system development that is harder to link to underlying assumptions. We suggest that structured comparisons of parallel, transparent but paradigmatically distinct models are an important method for better understanding the potential scope and uncertainties of future land use change.


2007 ◽  
Vol 22 (10) ◽  
pp. 1447-1459 ◽  
Author(s):  
Robin B. Matthews ◽  
Nigel G. Gilbert ◽  
Alan Roach ◽  
J. Gary Polhill ◽  
Nick M. Gotts
Keyword(s):  
Land Use ◽  

2011 ◽  
Vol 6 (2-3) ◽  
pp. 195-210 ◽  
Author(s):  
James D.A. Millington ◽  
David Demeritt ◽  
Raúl Romero-Calcerrada

2008 ◽  
Vol 3 (1) ◽  
pp. 27-40 ◽  
Author(s):  
V. Yadav ◽  
S. J. Del Grosso ◽  
W. J. Parton ◽  
G. P. Malanson

PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2814 ◽  
Author(s):  
Thomas J. Habib ◽  
Scott Heckbert ◽  
Jeffrey J. Wilson ◽  
Andrew J. K. Vandenbroeck ◽  
Jerome Cranston ◽  
...  

The science of ecosystem service (ES) mapping has become increasingly sophisticated over the past 20 years, and examples of successfully integrating ES into management decisions at national and sub-national scales have begun to emerge. However, increasing model sophistication and accuracy—and therefore complexity—may trade-off with ease of use and applicability to real-world decision-making contexts, so it is vital to incorporate the lessons learned from implementation efforts into new model development. Using successful implementation efforts for guidance, we developed an integrated ES modelling system to quantify several ecosystem services: forest timber production and carbon storage, water purification, pollination, and biodiversity. The system is designed to facilitate uptake of ES information into land-use decisions through three principal considerations: (1) using relatively straightforward models that can be readily deployed and interpreted without specialized expertise; (2) using an agent-based modelling framework to enable the incorporation of human decision-making directly within the model; and (3) integration among all ES models to simultaneously demonstrate the effects of a single land-use decision on multiple ES. We present an implementation of the model for a major watershed in Alberta, Canada, and highlight the system’s capabilities to assess a suite of ES under future management decisions, including forestry activities under two alternative timber harvest strategies, and through a scenario modelling analysis exploring different intensities of hypothetical agricultural expansion. By using a modular approach, the modelling system can be readily expanded to evaluate additional ecosystem services or management questions of interest in order to guide land-use decisions to achieve socioeconomic and environmental objectives.


Sign in / Sign up

Export Citation Format

Share Document