scholarly journals PROTECTION AGAINST CORROSION OF THE TECHNOLOGICAL EQUIPMENT OF THE OIL REFINING ENTERPRISE

Author(s):  
Vladislav Bichevin ◽  
Nina Sosnovskaya

A method for slowing down the corrosion of heat exchangers in the T-104 and T102 heat recovery boiler blocks is considered. PK-1 Aminate was selected as the most suitable inhibitor for process heat exchangers of the waste heat recovery boiler unit

2021 ◽  
pp. 294-294
Author(s):  
Peng Li ◽  
Baokuan Li ◽  
Zhongqiu Liu ◽  
Wenjie Rong

The main objective of this paper is to establish a mathematical framework to analyze the complex thermal economic performance of the calcination process. To find the factors affecting exergy efficiency loss, different exergy destruction is investigated in detail. Furthermore, the exergy flow cost model for exergy cost saving has also been developed. The results show that the vertical shaft furnace is a self-sufficiency equipment without additional fuel required, but the overall exergy destruction accounts for 54.11% of the total exergy input. In addition, the energy efficiency of the waste heat recovery boiler and thermal deaerator are 83.52% and 96.40%, whereas the exergy efficiency of the two equipment are 65.98% and 94.27%. Furthermore, the import exergy flow cost of vertical shaft furnace, waste heat recovery boiler and thermal deaerator are 366.5197 RMB/MJ, 0.1426 RMB/MJ and 0.0020RMB/MJ, respectively. Based on the result, several suggestions were proposed to improve the exergoeconomic performance. Assessing the performance of suggested improvements, the total exergy destruction of vertical shaft furnace is reduced to 134.34 GJ/h and the exergy efficiency of waste heat recovery boiler is raised up to 66.02%. Moreover, the import exergy flow cost of the three different equipment is reduced to 0.0329 RMB/MJ, 0.1304 RMB/MJ and 0.0002 RMB/MJ, respectively.


1996 ◽  
Vol 118 (3) ◽  
pp. 561-564 ◽  
Author(s):  
B. Seyedan ◽  
P. L. Dhar ◽  
R. R. Gaur ◽  
G. S. Bindra

In the present work a procedure for optimum design of waste heat recovery boiler of a combined cycle power plant has been developed. This method enables the optimization of waste heat recovery boiler independent of the rest of the system and the design thus obtained can directly be employed in an existing plant.


2003 ◽  
Vol 10 (1) ◽  
pp. 59-66 ◽  
Author(s):  
S. Srikanth ◽  
B. Ravikumar ◽  
Swapan K. Das ◽  
K. Gopalakrishna ◽  
K. Nandakumar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document