scholarly journals Solvability of a nonlinear general third order four point eigenvalue problem on time scales

2011 ◽  
Vol 20 (2) ◽  
pp. 171-182
Author(s):  
S. NAGESWARA RAO ◽  

We consider the four point boundary value problem for third order nonlinear differential equation on time scales ... subject to the boundary conditions ... t1 ≤ t2 ≤ t3 ≤ σ 3 (t4), α > 0, β > 0. Values of the parameter λ are determined for which the boundary value problem has a positive solution by utilizing a fixed point theorem on cone.

2009 ◽  
Vol 2009 ◽  
pp. 1-15
Author(s):  
Jian Liu ◽  
Fuyi Xu

We study the following third-orderm-point boundary value problems on time scales(φ(uΔ∇))∇+a(t)f(u(t))=0,t∈[0,T]T,u(0)=∑i=1m−2biu(ξi),uΔ(T)=0,φ(uΔ∇(0))=∑i=1m−2ciφ(uΔ∇(ξi)), whereφ:R→Ris an increasing homeomorphism and homomorphism andφ(0)=0,0<ξ1<⋯<ξm−2<ρ(T). We obtain the existence of three positive solutions by using fixed-point theorem in cones. The conclusions in this paper essentially extend and improve the known results.


2013 ◽  
Vol 2013 ◽  
pp. 1-9
Author(s):  
Yanbin Sang

We consider a high-order three-point boundary value problem. Firstly, some new existence results of at least one positive solution for a noneigenvalue problem and an eigenvalue problem are established. Our approach is based on the application of three different fixed point theorems, which have extended and improved the famous Guo-Krasnosel’skii fixed point theorem at different aspects. Secondly, some examples are included to illustrate our results.


2008 ◽  
Vol 2008 ◽  
pp. 1-19
Author(s):  
Wei Han ◽  
Guang Zhang

Several existence theorems of twin positive solutions are established for a nonlinearm-point boundary value problem of third-orderp-Laplacian dynamic equations on time scales by using a fixed point theorem. We present two theorems and four corollaries which generalize the results of related literature. As an application, an example to demonstrate our results is given. The obtained conditions are different from some known results.


2012 ◽  
Vol 2012 ◽  
pp. 1-15
Author(s):  
Fatma Tokmak ◽  
Ilkay Yaslan Karaca

A four-functional fixed point theorem and a generalization of Leggett-Williams fixed point theorem are used, respectively, to investigate the existence of at least one positive solution and at least three positive solutions for third-order -point boundary value problem on time scales with an increasing homeomorphism and homomorphism, which generalizes the usual -Laplacian operator. In particular, the nonlinear term is allowed to change sign. As an application, we also give some examples to demonstrate our results.


2008 ◽  
Vol 2008 ◽  
pp. 1-16 ◽  
Author(s):  
Fuyi Xu

We study the following third-orderp-Laplacianm-point boundary value problems on time scales:(ϕp(uΔ∇))∇+a(t)f(t,u(t))=0,t∈[0,T]T,βu(0)−γuΔ(0)=0,u(T)=∑i=1m−2aiu(ξi),ϕp(uΔ∇(0))=∑i=1m−2biϕp(uΔ∇(ξi)), whereϕp(s)isp-Laplacian operator, that is,ϕp(s)=|s|p−2s,p>1,  ϕp−1=ϕq,1/p+1/q=1,  0<ξ1<⋯<ξm−2<ρ(T). We obtain the existence of positive solutions by using fixed-point theorem in cones. The conclusions in this paper essentially extend and improve the known results.


2014 ◽  
Vol 926-930 ◽  
pp. 3665-3668
Author(s):  
Chun Li Wang ◽  
Chuan Zhi Bai ◽  
Xiao Dong Cai

In this paper we investigate the existence of positive solution of the following nonlinear discrete third-order two-point boundary value problem. whereis continuous and there existssuch that . Our approach relies on the Krasnosel'skii fixed point theorem. An example is given to demonstrate the application of the theorem obtained.


2004 ◽  
Vol 2004 (39) ◽  
pp. 2049-2063
Author(s):  
Yuji Liu ◽  
Weigao Ge

A new fixed point theorem on cones is applied to obtain the existence of at least two positive solutions of a higher-order three-point boundary value problem for the differential equation subject to a class ofboundary value conditions. The associated Green's function is given. Some results obtained recently are generalized.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Li-Juan Gao ◽  
Jian-Ping Sun

We are concerned with the following third-order three-point boundary value problem:u′′′t=ft, ut,   t∈0, 1,   u′0=u1=0and u′′η-αu′1=0,whereα∈0, 1andη∈(14+α)/(24-3α),1. Although the corresponding Green’s function is sign-changing, we still obtain the existence of at least two positive and decreasing solutions under some suitable conditions onfby using the two-fixed-point theorem due to Avery and Henderson.


2009 ◽  
Vol 2009 ◽  
pp. 1-12 ◽  
Author(s):  
Ying Zhang ◽  
ShiDong Qiao

We study the one-dimensionalp-Laplacianm-point boundary value problem(φp(uΔ(t)))Δ+a(t)f(t,u(t))=0,t∈[0,1]T,u(0)=0,u(1)=∑i=1m−2aiu(ξi), whereTis a time scale,φp(s)=|s|p−2s,p>1, some new results are obtained for the existence of at least one, two, and three positive solution/solutions of the above problem by usingKrasnosel′skll′sfixed point theorem, new fixed point theorem due to Avery and Henderson, as well as Leggett-Williams fixed point theorem. This is probably the first time the existence of positive solutions of one-dimensionalp-Laplacianm-point boundary value problem on time scales has been studied.


2008 ◽  
Vol 39 (4) ◽  
pp. 317-324
Author(s):  
Xiangyun Wu ◽  
Zhanbing Bai

In this paper, a fixed point theorem in a cone, some inequalities of the associated Green's function and the concavity of solutions are applied to obtain the existence of positive solutions of third-order three-point boundary value problem with dependence on the first-order derivative$\begin{cases}& x'''(t) = f(t, x(t), x'(t)), \quad 0 < t < 1, \\ & x(0) = x'(\eta) = x''(1) = 0, \end{cases}$where $f:[0, 1]\times[0, \infty)\times R\to [0,\infty)$ is a nonnegative continuous function, $\eta\in(1/2, 1).$


Sign in / Sign up

Export Citation Format

Share Document