scholarly journals Twin positive solutions for three-point boundary value problems of higher-order differential equations

2004 ◽  
Vol 2004 (39) ◽  
pp. 2049-2063
Author(s):  
Yuji Liu ◽  
Weigao Ge

A new fixed point theorem on cones is applied to obtain the existence of at least two positive solutions of a higher-order three-point boundary value problem for the differential equation subject to a class ofboundary value conditions. The associated Green's function is given. Some results obtained recently are generalized.

2007 ◽  
Vol 14 (4) ◽  
pp. 775-792
Author(s):  
Youyu Wang ◽  
Weigao Ge

Abstract In this paper, we consider the existence of multiple positive solutions for the 2𝑛th order 𝑚-point boundary value problem: where (0,1), 0 < ξ 1 < ξ 2 < ⋯ < ξ 𝑚–2 < 1. Using the Leggett–Williams fixed point theorem, we provide sufficient conditions for the existence of at least three positive solutions to the above boundary value problem. The associated Green's function for the above problem is also given.


2021 ◽  
Author(s):  
Noureddine Bouteraa ◽  
Habib Djourdem

In this chapter, firstly we apply the iterative method to establish the existence of the positive solution for a type of nonlinear singular higher-order fractional differential equation with fractional multi-point boundary conditions. Explicit iterative sequences are given to approximate the solutions and the error estimations are also given. Secondly, we cover the multi-valued case of our problem. We investigate it for nonconvex compact valued multifunctions via a fixed point theorem for multivalued maps due to Covitz and Nadler. Two illustrative examples are presented at the end to illustrate the validity of our results.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Chen Yang ◽  
Jieming Zhang

We are concerned with the existence and uniqueness of positive solutions for the following nonlinear perturbed fractional two-point boundary value problem:D0+αu(t)+f(t,u,u',…,u(n-2))+g(t)=0, 0<t<1, n-1<α≤n, n≥2,u(0)=u'(0)=⋯=u(n-2)(0)=u(n-2)(1)=0, whereD0+αis the standard Riemann-Liouville fractional derivative. Our analysis relies on a fixed-point theorem of generalized concave operators. An example is given to illustrate the main result.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
I. J. Cabrera ◽  
J. Harjani ◽  
K. B. Sadarangani

We investigate the existence and uniqueness of positive solutions for the following singular fractional three-point boundary value problemD0+αu(t)+f(t,u(t))=0, 0<t<1, u(0)=u′(0)=u′′(0)=0,u′′(1)=βu′′(η), where3<α≤4,D0+αis the standard Riemann-Liouville derivative andf:(0,1]×[0,∞)→[0,∞)withlim t→0+f(t,·)=∞(i.e.,fis singular att=0). Our analysis relies on a fixed point theorem in partially ordered metric spaces.


2005 ◽  
Vol 36 (2) ◽  
pp. 119-130 ◽  
Author(s):  
Yuji Liu ◽  
Weigao Ge

In this paper, we are concerned with the existence of solutions of the following multi-point boundary value problem consisting of the higher-order differential equations$ x^{(n)}(t)=f(t,x(t),x'(t),\cdots,x^{(n-1)}(t))+e(t),\;\;0


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Yunhong Li ◽  
Weihua Jiang

In this work, we investigate the existence and nonexistence of positive solutions for p-Laplacian fractional differential equation with a parameter. On the basis of the properties of Green’s function and Guo-Krasnosel’skii fixed point theorem on cones, the existence and nonexistence of positive solutions are obtained for the boundary value problems. We also give some examples to illustrate the effectiveness of our main results.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Yongping Sun ◽  
Qian Sun ◽  
Xiaoping Zhang

This paper is concerned with the existence and nonexistence of positive solutions for a nonlinear higher-order three-point boundary value problem. The existence results are obtained by applying a fixed point theorem of cone expansion and compression of functional type due to Avery, Henderson, and O’Regan.


2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Xiangshan Kong ◽  
Haitao Li

This paper investigates the solvability of a class of higher-order fractional two-point boundary value problem (BVP), and presents several new results. First, Green’s function of the considered BVP is obtained by using the property of Caputo derivative. Second, based on Schaefer’s fixed point theorem, the solvability of the considered BVP is studied, and a sufficient condition is presented for the existence of at least one solution. Finally, an illustrative example is given to support the obtained new results.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Yaohong Li ◽  
Xiaoyan Zhang

By constructing some general type conditions and using fixed point theorem of cone, this paper investigates the existence of at least one and at least two positive solutions for systems of nonlinear higher order differential equations with integral boundary conditions. As application, some examples are given.


2014 ◽  
Vol 0 (0) ◽  
Author(s):  
Mohammad Hussian Akrami ◽  
Gholam Hussian Erjaee

AbstractIn this article, we study the existence of positive solutions of a multi-point boundary value problem for some system of fractional differential equations. The fixed point theorem on cones will be applied to demonstrate the existence of solutions for this system. At the end, an example shows the application of the main results.


Sign in / Sign up

Export Citation Format

Share Document