The Maximum Size of a Partial Spread in $H(4 n +1, q^2)$ is $q^{2 n +1}+1$
Keyword(s):
We prove that in every finite Hermitian polar space of odd dimension and even maximal dimension $\rho$ of the totally isotropic subspaces, a partial spread has size at most $q^{\rho+1}+1$, where $GF(q^2)$ is the defining field. This bound is tight and is a generalisation of the result of De Beule and Metsch for the case $\rho=2$.
2019 ◽
Vol 12
(05)
◽
pp. 1950069
2017 ◽
Vol 152
◽
pp. 353-362
◽
1997 ◽
Vol 251
◽
pp. 239-248
◽
2020 ◽
Vol 31
(03)
◽
pp. 327-339
2016 ◽
Vol 08
(04)
◽
pp. 1650056
◽
Keyword(s):
2007 ◽
Vol 114
(4)
◽
pp. 761-768
◽
1991 ◽
Vol 159
◽
pp. 121-128
◽