scholarly journals Independent Sets in Graphs with Given Minimum Degree

10.37236/2722 ◽  
2012 ◽  
Vol 19 (3) ◽  
Author(s):  
James Alexander ◽  
Jonathan Cutler ◽  
Tim Mink

The enumeration of independent sets in graphs with various restrictions has been a topic of much interest of late.  Let $i(G)$ be the number of independent sets in a graph $G$ and let $i_t(G)$ be the number of independent sets in $G$ of size $t$.  Kahn used entropy to show that if $G$ is an $r$-regular bipartite graph with $n$ vertices, then $i(G)\leq i(K_{r,r})^{n/2r}$.  Zhao used bipartite double covers to extend this bound to general $r$-regular graphs.  Galvin proved that if $G$ is a graph with $\delta(G)\geq \delta$ and $n$ large enough, then $i(G)\leq i(K_{\delta,n-\delta})$.  In this paper, we prove that if $G$ is a bipartite graph on $n$ vertices with $\delta(G)\geq\delta$ where $n\geq 2\delta$, then $i_t(G)\leq i_t(K_{\delta,n-\delta})$ when $t\geq 3$.  We note that this result cannot be extended to $t=2$ (and is trivial for $t=0,1$).  Also, we use Kahn's entropy argument and Zhao's extension to prove that if $G$ is a graph with $n$ vertices, $\delta(G)\geq\delta$, and $\Delta(G)\leq \Delta$, then $i(G)\leq i(K_{\delta,\Delta})^{n/2\delta}$.

2001 ◽  
Vol 10 (3) ◽  
pp. 219-237 ◽  
Author(s):  
JEFF KAHN

We use entropy ideas to study hard-core distributions on the independent sets of a finite, regular bipartite graph, specifically distributions according to which each independent set I is chosen with probability proportional to λ[mid ]I[mid ] for some fixed λ > 0. Among the results obtained are rather precise bounds on occupation probabilities; a ‘phase transition’ statement for Hamming cubes; and an exact upper bound on the number of independent sets in an n-regular bipartite graph on a given number of vertices.


2014 ◽  
Vol 24 (3) ◽  
pp. 521-527 ◽  
Author(s):  
WENYING GAN ◽  
PO-SHEN LOH ◽  
BENNY SUDAKOV

Letit(G) be the number of independent sets of sizetin a graphG. Engbers and Galvin asked how largeit(G) could be in graphs with minimum degree at least δ. They further conjectured that whenn⩾ 2δ andt⩾ 3,it(G) is maximized by the complete bipartite graphKδ,n−δ. This conjecture has recently drawn the attention of many researchers. In this short note, we prove this conjecture.


10.37236/1351 ◽  
1998 ◽  
Vol 5 (1) ◽  
Author(s):  
Noga Alon ◽  
Vojtech Rödl ◽  
Andrzej Ruciński

A super $(d,\epsilon)$-regular graph on $2n$ vertices is a bipartite graph on the classes of vertices $V_1$ and $V_2$, where $|V_1|=|V_2|=n$, in which the minimum degree and the maximum degree are between $ (d-\epsilon)n$ and $ (d+\epsilon) n$, and for every $U \subset V_1, W \subset V_2$ with $|U| \geq \epsilon n$, $|W| \geq \epsilon n$, $|{{e(U,W) }\over{|U||W|}}-{{e(V_1,V_2)}\over{|V_1||V_2|}}| < \epsilon.$ We prove that for every $1>d >2 \epsilon >0$ and $n>n_0(\epsilon)$, the number of perfect matchings in any such graph is at least $(d-2\epsilon)^n n!$ and at most $(d+2 \epsilon)^n n!$. The proof relies on the validity of two well known conjectures for permanents; the Minc conjecture, proved by Brégman, and the van der Waerden conjecture, proved by Falikman and Egorichev.


2014 ◽  
Vol 91 (2) ◽  
pp. 177-182
Author(s):  
XIAOLAN HU ◽  
YUNQING ZHANG ◽  
YAOJUN CHEN

AbstractLet $G$ be a graph of order $n\geq 6$ with minimum degree ${\it\delta}(G)\geq 4$. Arkin and Hassin [‘Graph partitions with minimum degree constraints’, Discrete Math. 190 (1998), 55–65] conjectured that there exists a bipartition $S,T$ of $V(G)$ such that $\lfloor n/2\rfloor -2\leq |S|,|T|\leq \lceil n/2\rceil +2$ and the minimum degrees in the subgraphs induced by $S$ and $T$ are at least two. In this paper, we first show that $G$ has a bipartition such that the minimum degree in each part is at least two, and then prove that the conjecture is true if the complement of $G$ contains no complete bipartite graph $K_{3,r}$, where $r=\lfloor n/2\rfloor -3$.


10.37236/1022 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
Béla Csaba

Let $G$ be a simple balanced bipartite graph on $2n$ vertices, $\delta = \delta(G)/n$, and $\rho_0={\delta + \sqrt{2 \delta -1} \over 2}$. If $\delta \ge 1/2$ then $G$ has a $\lfloor \rho_0 n \rfloor$-regular spanning subgraph. The statement is nearly tight.


10.37236/499 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Michael A. Henning ◽  
Ingo Schiermeyer ◽  
Anders Yeo

For a graph $G$, let $\gamma(G)$ denote the domination number of $G$ and let $\delta(G)$ denote the minimum degree among the vertices of $G$. A vertex $x$ is called a bad-cut-vertex of $G$ if $G-x$ contains a component, $C_x$, which is an induced $4$-cycle and $x$ is adjacent to at least one but at most three vertices on $C_x$. A cycle $C$ is called a special-cycle if $C$ is a $5$-cycle in $G$ such that if $u$ and $v$ are consecutive vertices on $C$, then at least one of $u$ and $v$ has degree $2$ in $G$. We let ${\rm bc}(G)$ denote the number of bad-cut-vertices in $G$, and ${\rm sc}(G)$ the maximum number of vertex disjoint special-cycles in $G$ that contain no bad-cut-vertices. We say that a graph is $(C_4,C_5)$-free if it has no induced $4$-cycle or $5$-cycle. Bruce Reed [Paths, stars and the number three. Combin. Probab. Comput. 5 (1996), 277–295] showed that if $G$ is a graph of order $n$ with $\delta(G) \ge 3$, then $\gamma(G) \le 3n/8$. In this paper, we relax the minimum degree condition from three to two. Let $G$ be a connected graph of order $n \ge 14$ with $\delta(G) \ge 2$. As an application of Reed's result, we show that $\gamma(G) \le \frac{1}{8} ( 3n + {\rm sc}(G) + {\rm bc}(G))$. As a consequence of this result, we have that (i) $\gamma(G) \le 2n/5$; (ii) if $G$ contains no special-cycle and no bad-cut-vertex, then $\gamma(G) \le 3n/8$; (iii) if $G$ is $(C_4,C_5)$-free, then $\gamma(G) \le 3n/8$; (iv) if $G$ is $2$-connected and $d_G(u) + d_G(v) \ge 5$ for every two adjacent vertices $u$ and $v$, then $\gamma(G) \le 3n/8$. All bounds are sharp.


10.37236/6019 ◽  
2017 ◽  
Vol 24 (1) ◽  
Author(s):  
Péter Csikvári ◽  
Zhicong Lin

Let $\hom(H,G)$ denote the number of homomorphisms from a graph $H$ to a graph $G$. Sidorenko's conjecture asserts that for any bipartite graph $H$, and a graph $G$ we have$$\hom(H,G)\geq v(G)^{v(H)}\left(\frac{\hom(K_2,G)}{v(G)^2}\right)^{e(H)},$$where $v(H),v(G)$ and $e(H),e(G)$ denote the number of vertices and edges of the graph $H$ and $G$, respectively. In this paper we prove Sidorenko's conjecture for certain special graphs $G$: for the complete graph $K_q$ on $q$ vertices, for a $K_2$ with a loop added at one of the end vertices, and for a path on $3$ vertices with a loop added at each vertex. These cases correspond to counting colorings, independent sets and Widom-Rowlinson colorings of a graph $H$. For instance, for a bipartite graph $H$ the number of $q$-colorings $\mathrm{ch}(H,q)$ satisfies$$\mathrm{ch}(H,q)\geq q^{v(H)}\left(\frac{q-1}{q}\right)^{e(H)}.$$In fact, we will prove that in the last two cases (independent sets and Widom-Rowlinson colorings) the graph $H$ does not need to be bipartite. In all cases, we first prove a certain correlation inequality which implies Sidorenko's conjecture in a stronger form.


10.37236/2319 ◽  
2013 ◽  
Vol 20 (3) ◽  
Author(s):  
Rafał Kalinowski ◽  
Monika Pilśniak ◽  
Jakub Przybyło ◽  
Mariusz Woźniak

Let $c:E(G)\rightarrow [k]$ be  a colouring, not necessarily proper, of edges of a graph $G$. For a vertex $v\in V$, let $\overline{c}(v)=(a_1,\ldots,a_k)$, where $ a_i =|\{u:uv\in E(G),\;c(uv)=i\}|$, for $i\in [k].$ If we re-order the sequence $\overline{c}(v)$ non-decreasingly, we obtain a sequence $c^*(v)=(d_1,\ldots,d_k)$, called a palette of a vertex $v$. This can be viewed as the most comprehensive information about colours incident with $v$ which can be delivered by a person who is unable to name colours but distinguishes one from another. The smallest $k$ such that $c^*$ is a proper colouring of vertices of $G$ is called the colour-blind index of a graph $G$, and is denoted by dal$(G)$. We conjecture that there is a constant $K$ such that dal$(G)\leq K$ for every graph $G$ for which the parameter is well defined. As our main result we prove that $K\leq 6$ for regular graphs of sufficiently large degree, and for irregular graphs with $\delta (G)$ and $\Delta(G)$ satisfying certain conditions. The proofs are based on the Lopsided Lovász Local Lemma. We also show that $K=3$ for all regular bipartite graphs, and for complete graphs of order $n\geq 8$.


2019 ◽  
Vol 29 (1) ◽  
pp. 113-127
Author(s):  
Rajko Nenadov ◽  
Nemanja Škorić

AbstractGiven graphs G and H, a family of vertex-disjoint copies of H in G is called an H-tiling. Conlon, Gowers, Samotij and Schacht showed that for a given graph H and a constant γ>0, there exists C>0 such that if $p \ge C{n^{ - 1/{m_2}(H)}}$ , then asymptotically almost surely every spanning subgraph G of the random graph 𝒢(n, p) with minimum degree at least $\delta (G) \ge (1 - \frac{1}{{{\chi _{{\rm{cr}}}}(H)}} + \gamma )np$ contains an H-tiling that covers all but at most γn vertices. Here, χcr(H) denotes the critical chromatic number, a parameter introduced by Komlós, and m2(H) is the 2-density of H. We show that this theorem can be bootstrapped to obtain an H-tiling covering all but at most $\gamma {(C/p)^{{m_2}(H)}}$ vertices, which is strictly smaller when $p \ge C{n^{ - 1/{m_2}(H)}}$ . In the case where H = K3, this answers the question of Balogh, Lee and Samotij. Furthermore, for an arbitrary graph H we give an upper bound on p for which some leftover is unavoidable and a bound on the size of a largest H -tiling for p below this value.


Sign in / Sign up

Export Citation Format

Share Document